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Introduction

Au commencement le Verbe était
et le Verbe était avec Dieu
et le Verbe était Dieu.

Pour l'essentiel, ce livre expose le cours fondamental sur lequel, depuis une
dizaine d’années, Stueckelberg de Breidenbach base son enseignement de la phy-
sique théorique aux Universités de Geneve et de Lausanne. Adoptant cette théorie,
P. B. Scheurer, disciple et collaborateur du précédent, s’est efforcé de la présenter
dans toute sa rigueur et y a apporté certains arguments nouveaux.

L’exposé qui suit est élémentaire, au sens ou 'entendait F. Klein lorsqu’il bap-
tisait son traité de mathématique élémentaire ~'. Notre but est, en effet, d’établir
les lois de la physique a partir d'un systeme de propositions prises comme axiomes
ou principes, la justification du choix de ce systeme se trouvant dans la vérification
expérimentale des lois qu’on en déduit.

Ce but est, en fait, loin de nous étre particulier. Mais notre exposé présente
I’originalité de rompre avec une habitude presque traditionnelle, qui est de commen-
cer I’étude de la physique par la mécanique rationnelle, discipline dans laquelle le
point de masse s’introduit comme axiome. Au contraire, nous considérons d’emblée
le contenu spatio-temporel, rapporté a un référentiel {Z't}, non relativiste, tel qu’il se
présente en fait a [’observation macroscopique d’un systeme substantiel " pour des
vitesses faibles par rapport a celle de la lumiere. A cette partie de la physique, on
applique le terme de phénoménologique, qui s’oppose ainsi a ceux de microscopique
ou quantique employés pour désigner le niveau ou la discontinuité des processus joue
un role fondamental. Par conséquent, la phénoménologie ignore le concept méme de
fluctuations et se doit ainsi d’éviter toute référence a la mécanique statistique.

Pour rendre notre théorie aussi générale que possible, nous considérons ce continu
spatio-temporel comme formé de ’espace physique a d dimension et d’un seul temps.
Pour I'espace physique, en effet, seule la considération de I’électrodynamique et de la
relativité générale est capable de fixer a 3 le nombre de ses dimensions. D’autre part,
tant qu’on se restreint a I’homogénéité de I'espace, il suffit pour celui-ci de présen-
ter la structure d’espace affine, ou la distinction entre covariance et contravariance

(UBible de Jérusalem.

@)F. Klein, Elementarmathematik I, II (Springer Verlag).

®)Nous préférons employer « substantiel » plutot que « matériel ». En effet, la relativité générale
impose de considérer la matiere comme composée de la substance et du champ.
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est essentielle. Mais lorsqu’on veut prendre en considération également l'isotropie
de 'espace par la définition du moment cinétique, il devient nécessaire de pouvoir
changer de variance par I'introduction d’une métrique (ici constante). La structure
d’espace métrique autorise du méme coup ’énoncé de ’axiome de Newton, qui rend
le vecteur covariant quantité de mouvement proportionnel au vecteur contravariant
vitesse, avec le scalaire masse inerte comme facteur de proportionnalité. Cependant,
la signature de cette métrique (définie positive, négative ou non définie) est laissée
pendante jusqu’a I’application du deuxiéme principe, qui lui imposent d’étre définie.
Par choix de la définition positive, I’espace est alors rendu euclidien, ce qui abolit
la distinction entre covariance et contravariance.

Pour le temps, la succession des événements lui impose, au niveau phénoméno-
logique, la structure d’'un continu unidimensionnel totalement ordonné, c¢’est-a-dire
celle de la droite réelle. Mais une structure supplémentaire vient se surimposer a
la premiere : la fleche du temps, qui rend compte de la dissymétrie passé—futur
et de l'évolution irréversible des phénomeénes, caractere essentiel de la phénomé-
nologie. Vu ’homogénéité du temps, cette évolution est soumise au déterminisme
laplacien. En admettant qu’on puisse opérer la partition de I'Univers entre systeme
(sous observation) et milieu extérieur, et que ces deux parties soient sans interac-
tion aucune (on dit alors que le systeme est isolé), 'état du systéme a une époque
quelconque détermine entierement son état a tout autre temps, aussi bien antérieur
que postérieur.

Mais précisément la fleche du temps rend ce déterminisme non réciproque. Alors
qu’il est valable pour I’ évolution vers le futur, il tombe en faillite quand on veut 1’ex-
trapoler a un passé assez reculé. Techniquement, cette dissymétrie provient du fait
que les variables qui décrivent I’évolution de I’état du systeme, solutions d’équations
différentielles, convergent pour le futur lointain et diverge pour le passé lointain, a
cause du signe déterminé de certaines grandeurs qui interviennent dans les équations
de mouvement. La plupart des traités fixent ces signes arbitrairement ; notre théorie
présente 'avantage de les déduire, soit absolument pour certains, soit relativement
au signe de la température absolue pour d’autres.

Puisque l'irréversibilité du temps se rapporte a la non-décroissance de 'entro-
pie, c’est bien par la thermocinétique phénoménologique que nous sommes amenés a
commencer notre étude du monde physique. Si nous préférons le terme de thermo-
cinétique a celui, traditionnel, de thermodynamique, c’est que, d’une part, les forces
n’interviennent pas de fagon essentielle dans notre exposé, et que, d’autre part, nous
tenons ainsi a souligner notre différence d’avec les traités habituels, qui, sous le
nom de thermodynamique, étudient essentiellement une thermostatique, limitée a
la seule discussion des états d’équilibre. Tout au contraire, par 1’établissement des
équations de mouvement, nous prenons en considération I’histoire par laquelle de
tels états d’équilibre ont pu se produire a partir d’états qui ne sont pas d’équilibre.
C’est dire que, des le départ, la thermocinétique englobe ce que certains ont été
obligés d’appeler thermodynamique des états hors d’équilibre.

Des deux principes, c’est le deuziéme principe qui va jouer le role de fil conduc-
teur de notre exposé, puisque c’est celui qui introduit l'entropie, fonction d’état
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extensive du systeme. Mais pour en obtenir la fleche du temps, nous sommes obligés
de le scinder en deux parties.

2a) Le principe d’évolution : non-décroissance de 'entropie dans le temps pour un
systeme adiabatiquement fermé. Il se trouve que cette partie, traditionnelle, est
parfaitement réversible avec le temps.

2b) Le principe d’équilibre : existence d’un maximum d’entropie pour un systéme
isolé, qui, en général, n’est atteint qu’asymptotiquement, pour le futur lointain.
C’est sur cette deuxieéme partie, qui donne la fleche du temps, que nous croyons
avoir apporté une contribution originale.

Ce maximum d’entropie d’un systeme isolé est soumis a des contraintes qui lui
impose un premier principe généralisé a toutes les grandeurs extensives donnant lieu
a un principe de conservation : non seulement 1’énergie, mais encore la quantité de
mouvement, le moment cinétique et, par 'axiome de Newton et la covariance par
rapport au groupe de Galilée, la masse.

Comme il est bien connu, on peut tenir compte de contraintes dans la recherche
d’un maximum soit par la méthode d’élimination de variables, soit par celle des
multiplicateurs (constants) de Lagrange. On sait bien aussi que, pour des fonctions, si
les deux méthodes sont équivalentes en ce qui concerne la condition de stationnarité
(premiere variation), elles ne le sont plus pour la condition de maximum (deuxiéme
variation). Mais dans le cas du continu, pour des fonctionnelles de type densité (qui
rendent compte du caractére d’extensivité de 'entropie et des contraintes) nous
montrons la complete équivalence de ces deux méthodes.

Cependant, a cause des difficultés plus grandes a manipuler le concept de fonc-
tionnelle d’état plutét que celui de fonction d’état, par souci de pédagogie, nous
avons préféré faire précéder 'étude du systeme continu par celui du systeme discret.
Nous entendons par la que nous pouvons décomposer le systéme considéré en un en-
semble tres grand, mais fini, plutot que continu, d’éléments de systéme, qui, bien que
petits, ne sont pas des systemes élémentaires, au sens de la mécanique statistique.
Par définition et par postulat, un élément de systeme, a coté des variables géomé-
triques qui décrivent son état, variables en rapport avec la configuration géométrique
du systéme, au sens large, ne comporte qu'une seule variable d’état non géométrique,
son entropie. Par 'introduction de ces éléments de systeme, nous sommes en mesure
de considérer des équilibres partiels (ou locaux dans le systeme continu).

Les considérations qui précedent dictent tout naturellement 'organisation du
plan de ce livre. Au premier chapitre, apres discussion de la notion de temps et
présentation des deux principes, nous étudions le systeme discret comme réunion
en nombre fini d’éléments de systeme. Dans un tel systéeme déja, la relation entre
I’énergie, l'entropie et la température absolue 71" donne a cette derniere le signe
négatif aussi bien que le signe positif. Nous montrons que les températures absolues
négatives, pour autant qu’elles existent, sont plus chaudes que les températures
absolues positives. Nous introduisons pour cela une nouvelle fonction d’état continue
sur tout l'axe réel, la température naturelle 7, qui, par définition, est égale & moins
I'inverse de la température absolue T
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Le chapitre deux est consacré a la présentation du systeme continu, a 1’établis-
sement des équations de continuité pour les densités de I’entropie et des contraintes,
et a la démonstration de théoreme de ’équivalence des méthodes d’élimination de
variables et de multiplicateurs de Lagrange pour la recherche d’un maximum lié par
des contraintes, dans le cas de fonctionnelles de type densité. Y est introduite égale-
ment la notion capitale de covariance d’une grandeur ou d’une équation par rapport
au groupe de Galilée. C’est cette notion en effet qui impose a la thermocinétique
phénoménologique son caractere galiléen. Qu’on la remplace par celle de covariance
par rapport au groupe de Lorentz, comme nous le ferons par la suite, et on obtiendra
la théorie relativiste correspondante.

Les quatre chapitres suivants traitent du systeme fluide, pour I'équilibre ciné-
tique comme pour I’équilibre statique, avec une seule ou plusieurs composantes chi-
miques.

Le chapitre trois décrit les variables d’état du fluide a une seule composante
chimique, et dérive les équations de mouvement de ces variables a partir des équa-
tions de continuité des densités correspondantes (donc a partir des principes) et par
imposition de la covariance par rapport au groupe de Galilée. Le deuxiéme prin-
cipe, dans ses deux parties, détermine le signe de toutes les fonctions d’état locales,
soit absolument positif pour les grandeurs purement thermiques comme capacités de
chaleur et coefficients de conductibilité de chaleur, soit relativement au signe de la
température absolue T' pour les grandeurs géométriques comme masse, coefficients
de frottement ou de viscosité, modules d’élasticité. En particulier, nous insistons sur
le fait que la densité de masse, considérée comme fonction d’état locale, doit tou-
jours avoir le signe de la température locale. C’est un fait qui, a notre connaissance,
manque dans tous les traités élémentaires. Il rend compte pourtant de I’élimination
des températures absolues négatives quand on choisit, comme d’ordinaire, le signe
de la masse positif . Vu 'existence dans d’autres domaines de la physique de sys-
temes a température absolue négative, vu aussi 'arbitraire dans le choix du signe
de la masse, nous donnerons tous nos énoncés symétriquement pour 7' > 0 et pour
T < 0.

Si, maintenant, on linéarise les équations de mouvement pour décrire ’approche
infinitésimale de I’état d’équilibre, on obtient un systéeme d’équations aux dérivées
partielles, dont les coefficients, produits de fonctions d’état, ont leur signe fixé par la
discussion précédente, les solutions de ce systéme donnent lieu a la fleche du temps.

Le chapitre quatre, plus traditionnel, traite de 1’équilibre statique, dans lequel
les fonctionnelles se réduisent a des fonctions d’état. Il présente ainsi le treillis des
divers potentiels thermodynamiques, la théorie de Gibbs relative aux phases, la
thermométrie et le gaz parfait. Il considere enfin les états de basse température, en
rapport avec le troisieme principe. On en tire en effet cette conséquence du principe
d’équilibre : du moment que masse et température absolue doivent étre de méme
signe, I'isotherme T = +0 ne peut étre que ’enveloppe des isentropes, si les fonctions
sont analytiques. Elle se confond ainsi avec I'isentrope minimale S = S°, qui d’aprés

() Afin de rendre paralleles vitesse et quantité de mouvement dans une métrique positive.
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le théoréme de Nernst (troisi¢éme principe), a la valeur S° > —oo (cf. aussi 'annexe
B).

Le chapitre cinq reprend 'équilibre cinétique mais pour un systeme a plusieurs
composantes chimiques. Le phénomene nouveau est donc l'existence possible de
réactions chimiques. Contrairement au cas simple, les équations de mouvement ne
satisfont plus trivialement aux conditions d’équilibre ; pour qu’elles puissent le faire,
il faut introduire la loi de Lavoisier (qui, de ce fait, releve de la covariance de Galilée).
Comme précédemment, la linéarisation des équations de mouvement met en évidence
le phénomene de la fleche du temps.

Au chapitre six, on reprend les potentiels thermodynamiques et les phases, en
présence de réactions chimiques. On étudie aussi I’équilibre chimique dans le gaz
parfait et dans les solutions diluées.

Enfin le chapitre sept étend au systeme solide les méthodes appliquées au sys-
teme fluide, dans la mesure ou le solide subit seulement des déformations infinitési-
males. En particulier, nous déterminons également le signe des modules d’élasticité
relativement au signe choisi pour 7.

Par commodité pour le lecteur, nous avons fait figurer dans une annexe A toutes
les précisions mathématiques dont il pourrait avoir besoin concernant notations, di-
mensions, éléments de calcul tensoriel dans ’espace affine et dans I’espace métrique,
ces derniers dans le langage traditionnel des physiciens.

Une annexe B présente le troisiéme principe en relativité restreinte (r.r.) : 'in-
égalité postulée sy > 0 est a mettre en relation avec I'inégalité

s(z) + (1/T)[s(z),n(z)]n(z) = 0
qu’on y obtient a partir des deux premiers principes.

L’ouvrage est complété par une bibliographie raisonnée, par un index des nota-
tions et par un index des termes.

La publication d'un ouvrage comme celui-ci ne va pas sans multiples concours.
Nos remerciements s’adressent d’abord au Fonds National Suisse de la Recherche
Scientifique : grace a la subvention a fonds perdus qu’il nous a généreusement accor-
dée, notre livre peut se vendre a un prix raisonnable, qui rend possible son acquisition
par I’étudiant, le professeur ou le chercheur pour leur bibliotheque personnelle. Ils
vont ensuite a la maison Birkh&duser Verlag S.A. a Bale, pour le soin méticuleux et
bien conforme a sa réputation avec lequel elle a édité cet ouvrage. Ils s’adressent
encore a M. R. Barde pour son appui efficace dans nos démarches.

D’autre part, c’est un plaisir pour nous exprimer notre gratitude a tous ceux de
nos collegues qui, de pres ou de loin, ont bien voulu s’intéresser a notre manuscrit.
Nous sommes d’abord heureux de témoigner notre reconnaissance a nos collegues
de I'Ecole de Physique de I’Université de Geneve, les Professeurs J.-M. Jauch, C.
Enz, M. Peter et C. Piron, ainsi qu’au Professeur D. Rivier, de Lausanne, pour leurs
pertinentes critiques et suggestions. Nous sommes particulierement redevables aux
Docteurs Ch. Gruber, de I’Ecole polytechnique fédérale de Lausanne, et J. Chevalier,
de Geneve, d’avoir bien voulu relire entierement notre manuscrit sur épreuves.
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Nous remercions ensuite pour un échange de correspondance fructueux a plus
d’un titre les Professeurs W. Thirring, de Vienne (Autriche), R. Hagedorn, du CERN
(Geneve), D. Speiser, de Louvain (Belgique). Le Professeur M. Fierz, de I'Ecole
polytechnique fédérale de Zurich, nous a particulierement aidés en attirant notre
attention sur l'indépendance du 3° principe, méme en relativité restreinte : qu’il en
soit chaleureusement remercié ici.

Enfin, nous remercions collectivement les secrétaires de 'Ecole de Physique de
Geneve, qui ont tapé avec diligence les diverses versions d’un manuscrit souvent
difficile, et surtout nos assistants et étudiants des Universités de Geneve et de Lau-
sanne, dont les questions se sont trouvées une provocation constante a améliorer
notre exposé.
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CHAPITRE 1

Principes et systemes discrets

Présentation

Nous commencons notre exposé par une analyse du concept de temps et par
les deux principes. Le temps se présente a nous comme un continu unidimensionnel
dont I’homogénéité est a la base du déterminisme laplacien. Mais conformément aux
indications de notre vie psychologique, il s'introduit une dissymétrie entre passé et
futur : la fleche du temps (section 1). On rend compte de cette structure supplémen-
taire d’une telle importance dans le monde phénoménologique par I'introduction de
I’entropie et par le deuziéme principe, a condition de le scinder en deux parties :
un principe d’évolution 2a) valable pour un systéme adiabatiquement fermé, qui est
encore symétrique sous l'inversion du temps, et par un principe d’équilibre 2b) va-
lable pour un systeme isolé qui, lui, donne la fleche du temps (section 2). Le premier
principe est exposé ensuite, avec les lois de conservation de I’ énergie et d’éventuelles
autres grandeurs extensives qui le caractérisent (section 3). Il permet de distinguer
entre travail et chaleur.

Nous appliquons alors les principes ainsi formulés au systeme discret, c¢’est-a-
dire au systéeme décomposable en un nombre €2 tres grand mais fini d’éléments de
systemes ¥4 dont I’état ne dépend que d’une seule variable non géométrique, leur
entropie S4. Le deuxiéme principe, sous ses deux formes, fixe le signe des grandeurs
de frottement et d’inertie en rapport avec celui de la température absolue (section
4). En exemple, l'oscillateur harmonique est traité a l’aide de ce modele (section 5).

Nous passons alors au systeme entier X. La fermeture adiabatique de ¥ permet
d’introduire des courants de chaleurs d’un élément de systeme a un autre et 1’échelle
naturelle 7 des températures qui s’étend du froid au chaud de facon continue et fait
alors les températures absolues 7" négatives plus chaudes que les positives (section 6).
Les conductivités de chaleur k2, par le principe 2a), aussi bien que les capacités
de chaleur C4, par le principe 2b), sont strictement positives. L’équilibre ayant
lieu pour le systeme fermé, la condition de maximum d’entropie se traduit par la
condition de minimum (resp. maximum) de I’énergie pour 7' > 0 (resp. T < 0), de
telle sorte que I’entropie doit présenter son maximum en 7 = 0 (section 7), si T < 0
et T > 0 sont tous deux réalisables.



2 La notion de temps

Pour traiter le probleme de la recherche d’un maximum lié par une ou plusieurs
contraintes, on peut procéder soit par élimination d'une ou plusieurs variables, soit
par I’emploi d'un ou de plusieurs multiplicateurs de Lagrange : ces deux méthodes,
qui dans le cas discret ne sont pas compleétement équivalentes (mais le sont pour le
systéme continu), sont exposées a la section 8.

La section 9 introduit alors I’énergie libre comme illustration de la méthode des
multiplicateurs de Lagrange : cette grandeur présente une relation remarquable avec
le travail récupéré.

La prise en considération du contact de 3 avec un (ou plusieurs) réservoirs de
chaleur conduit & I'inégalité fondamentale 65 > 6Q/T® (T est la température
absolue du réservoir de chaleur, section 10) valable méme si ¥ ne possede pas de
température T' (c’est-a-~dire n’est pas en équilibre thermique). Dans le cas ou I'inéga-
lité fondamentale se réduit a I’égalité, on a affaire a des transformations réversibles
(section 11), qui jouissent de propriétés remarquables : elles sont quasistatiques,
I’équilibre thermique est réalisé et les forces extérieures sont des fonctions d’état.
Isentropes et isothermes déterminent de telles transformations, mais aucune trans-
formation réversible ne permet de traverser 7 = 0 bien que 7 soit continue en cette
valeur. Enfin le section 12 introduit la notion de cycle et étudie le rendement de
la machine périodique, aussi bien pour 7" > 0 que pour 7" < 0, dans son emploi
thermique (créer ou détruire du travail) et dans son emploi calorique (aller vers des
températures inaccessibles 7' = +0 ou 7" = —0). Aucun cycle ne peut fonction-
ner entre deux températures absolues de signes différents. Le cycle de Carnot est
mentionné comme cas particulier.

1.1 La notion de temps

Dans 'Univers, nous constatons que tout est soumis au changement. Cette
constatation n’est pas indépendante de notre organisation sensorimotrice et de notre
langage. Dans la mouvance de nos sensations, nous apprenons a reconnaitre des
structures stables, auxquelles nous donnons un nom. Ce faisant, nous isolons du
reste de I'Univers (baptisé : monde extérieur) une structure déterminée, un « objet »,
(que nous appelons systéme et noterons X.) en oubliant d’ailleurs le role que nous
jouons dans cette dichotomisation. (Ce role ne devient explicite que dans certaines
interprétations de la Mécanique Quantique, auxquelles nous ne nous arréterons pas
ici.)

Un systeme peut changer de bien des manieres : il peut par exemple se mouvoir
dans l’espace. Mais il est un changement auquel n’échappe aucun systeme : son
évolution dans le temps.

De ce point de vue, dans 1’Univers le temps joue un role plus fondamental que
I’espace. Dans nos langues indo-européennes, le temps apparait explicitement dans
les formes verbales, non le lieu (ce caractere, d’ailleurs, n’est pas vrai pour tout
langage). Mathématiquement, nous sommes capable de concevoir plusieurs especes
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d’espaces : espaces vectoriels topologiques, métriques, euclidiens, riemanniens, etc.,
tandis qu’aucune culture n’a jamais pu imaginer le temps autrement qu’un ensemble
de points unidimensionnels : si, souvent, la quantification de la durée n’est pas
établie, en revanche il ne manque jamais la structure d’ordre total des événements,
la chaine.

Cette chaine est parfois congue comme un segment (un compact), comme c’est
le cas du temps biblique : il y a eu un commencement des temps et il y aura une
fin des temps' ). Elle peut 'étre comme une demi-droite (un semi-ouvert) : un
commencement et pas de fin. Enfin, comme chez les Grecs, ce que nous appellerons
donc le temps grec est congu comme une droite (un ouvert) sans origine ni fin,
¢’est-a-dire comme un continu unidimensionnel.

Nous désignerons la droite du temps par
—00 <t < 400. (1.1.1)

Cependant cette droite est munie d’une structure supplémentaire : celle de la fleche
du temps : « futur «— passé ». Par rapport a une époque donnée t = t’ de la droite
du temps, on est convenu de considérer les points situés a t” —t' > 0 comme le futur
de t' et ceux a t"” —t' < 0 comme le passé de t'.

Cette structure n’a jamais été mise en doute en ce qui concerne les lois phénomé-
nologiques, quelle que soit la branche du savoir. Mais en dehors de la phénoménologie,
il peut en étre difféeremment. Ainsi en physique quantique, quantique s’opposant ici
a phénoménologique, les lois présentent la covariance par rapport a la symétrie T’
d’inversion du temps

T:t—'t=—t. (1.1.2)

La différence entre passé et futur d’'une époque donnée ¢’ s’établit sur deux plans
bien différents : celui de la conscience et celui de la physique phénoménologique.

1. Sur le plan psychologique

Nous faisons appel a notre mémoire que nous supposons infaillible et sans oubli.
Les souvenirs qu’elle contient constituent des ensembles emboités, I'emboitement
allant dans le sens du temps. S’il faut admettre un ensemble vide, une origine et un
ensemble plein, une fin, lorsqu’il s’agit des événements de 1'Univers tout entier, est
une question qui ne peut trouver de réponse qu’en théorie de la relativité générale.

La distinction entre passé et futur se présente a « moi » ' de la maniére suivante.

Je considere une époque t"” antérieure a aujourd’hui ¢. Mon savoir a 1’époque

t" tel que je me le rappelle, était que les événements vécus a t < t” (le passé de
rouvait invari ment fixé ue je n’avais aucune prise sur eux. is a

t"") se trouvait invariablement fixés et que je n’avais aucune prise sur eux. Mais &

() Cette conception réapparait dans les travaux actuels en relativité générale a propos des « trous
noirs » (black holes).

) A une exception prés, comcernant les mésons K° et KO,

G)Le « solipsisme » est une attitude nécessaire a ’aspect quantique, vu le principe d’incertitude,
qui exclut un systeme isolé ¥ = ¥gg.
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cette méme époque t”, j’éprouvais le sentiment que j’étais capable d’agir sur les
événements a venir, c’est-a-dire que les événements qui se sont produits entre ¢
et ¢’ (futur de t" tel qu'il figure dans ma mémoire) dépendaient, dans une certaine
mesure, de ma libre volonté a t"”. Et je projette ce sentiment sur le futur de ¢'.

La figure 1.1.1 résume la situation

H t' = aujourd’hui

t < t" (passé de t") ¢ <t <t (futur de t")
(relativement & ma mémoire)

Fig. 1.1.1 Passé et futur selon « ma mémoire ».

2. Sur le plan de la physique phénoménologique

La différence entre passé et futur fait intervenir le déterminisme laplacien. Citons
I'extrait fameux de P. S. Laplace (1749-1827) :

« Une intelligence qui, pour un instant donné, connaitrait toutes les forces dont la
nature est animée et la situation respective des étres qui la composent, si, d’ailleurs,
elle était assez vaste pour soumettre ces données a l’analyse, embrasserait dans la
méme formule les mouvements des plus grands corps de 'univers et ceux du plus
léger atome; rien ne serait incertain pour elle, et ’avenir comme le passé serait
présent a ses yeux. » (Essai philosophique sur les probabilités, 1814.)

Relativement a un systéme isolé, le déterminisme laplacien impose une condition
sur les équations du mouvement de l’état de ce systeme :

L’état du systéme a une époque quelconque t' détermine son état a toute époque
t de la droite (1.1.1).

Cependant, cette condition n’est réalisée que dans le cas qui fait I'objet de ce
chapitre ot le systéme ¥ comprend un nombre fini 2 d’éléments de systéeme ™ L4 :

=) %% (4B,...=12...,9)
A

Mais il est bien connu que pour un systeme réel, composé d’un nombre continu
d’éléments de systéeme d% (%), (& étant le vecteur position)

zz/dz(:z),

la détermination de [’état n’existe que pour le seul futur t > t' (déterminisme non
réciproque). Si ce fait est connu, il ne nous semble pourtant pas avoir été apprécié
a sa juste valeur (section 3.5).

4 On trouve déja chez Saint Augustin les éléments d’une semblable analyse du temps, cf. K.
Jaspers : Die Grossen Philosophen, vol I, pp. 320-335, Pieper & Co., Miinchen (1959).

OV L ¢lément de systéme dX(Z) n’est pas ici un systéme élémentaire, comme c’est le cas en
thermocinétique statistique.
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Il nous faut maintenant passer a une description mathématique de 1’état d’un
systeme, afin de pouvoir en donner les équations du mouvement.

Nous ne voulons pas entrer ici dans la longue discussion qui serait nécessaire
pour élucider la relation entre état et systeme " : laquelle de ces deux notions faut-il
prendre commme primitive ? Si 'on prend 'une et I'autre, alors il faut prendre aussi
comme primitive la relation d’appartenance de 1’état au systeme. Renoncant a faire
du systeme une notion premiere, on pourrait étre tenté de définir celui-ci comme
une classe d’équivalence d’états, cette relation d’équivalence : « appartenir au méme
systeme » étant alors primitive. On peut enfin, ce que nous ferons, se contenter de la
seule notion d’état, définie par la méthode de préparation du systeme. Nous dirons
que deux systemes sont dans le méme état si nous estimons qu’ils ont été préparés de
la méme fagon. Il est clair que, de la sorte, nous introduisons des états qui peuvent
n’appartenir a aucun systeme (la méthode de préparation est impraticable), mais
cette introduction ne présente aucun inconvénient réel.

L’état & (t) au temps t du systéeme 3 sera donné par un ensemble de variables
d’état £*(t) , c’est-a-dire des quantités dont la valeur au temps ¢ ne dépend pas de
I’histoire du systeme,

def a
& (t) = {&*(®)}- (1.1.3)
L’indice o parcourt un ensemble fini (a, 3,... =1,2,...w < 00). Il peut étre com-

plété par un indice Z, qui parcourt I’ensemble des points de 'espace physique (ou
d’une de ses parties) de dimension d :

ef) Y ez ) afB,...=1,2,...,w

(1.1.4)
7 e R

Méme ainsi porté en argument, ¥ reste un indice, alors que ¢ est un parametre.

On appellera variables géométriques des quantités qui sont déterminées par la
position d’un point remarquable, c’est-a-dire essentiellement par la position de corps
extérieurs au systeme : par exemple, le volume d'un systeme est évidemment déter-
miné de cette fagon. Moins apparent, la masse du systéme entre aussi au nombre de
ces variables, par la méthode de préparation suivante : au zéro absolu, tous les corps
se trouvant cristallisés, on découpe dans le cristal le volume approprié. Les variables
qui n’appartiennent pas a cette classe, qui sont donc les quantités se rapportant
essentiellement a des caractéristiques internes du systeme, seront dites simplement
non géométriques.

Nous distinguerons également entre variables intensives, qui sont indépendantes
de la taille du systeme, c’est-a-dire de sa masse ou du nombre des particules qui le
constituent, et variables extensives qui dépendent de cette taille. Plus précisemment,
£%(t) est extensive si elle est la somme de ces méme variables définies sur tous les
sous-systémes Y4 constitutifs du systéme ¥ :

£%(t) extensive <= si ¥ = ZEA alors £%(t) = Z,an(t). (1.1.5)

A A

©)A ce propos, voir R. Giles : Mathematical Fundations of Thermodynamics, Pergamon (1964).
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Nous appellerons encore fonction d’état ou observable F' une fonction dépendant
explicitement de 1’état et de I’état seulement :

F:e@t) - Fle) < F). (1.1.6)

Nous supposerons toujours que nous disposons au moins de 2, {2 < co, observables

indépendantes F'', F?, ..., F* de facon & calculer de maniére univoque les variables
d’état £(t)

£9(t) : {FY(t), F(t), ..., Ft)} s €[FL(t), F2(t), ..., FO(t)]. (1.1.7)

En particulier, nous prendrons souvent les variables £*(t) elles-mémes comme 0b-
servables.

Enfin, un état est dit stationnaire si ses variables d’état sont constantes dans le
temps, et d’équilibre s’il est stationnaire et s’il n’existe aucun courant stationnaire
di a des sources extérieures.

Nous pouvons maintenant revenir au déterminisme laplacien, et aux conditions
by s < 1oz ; .
qu’il impose a ’état d’un systeme.

a) La premiere porte sur les équations de mouvement de variables d’état. En toute
généralité :

oo def d g, are.

§8(t) = &%) = ¢*le(2), 1. (1.1.8)
Elles peuvent dépendre explicitement du temps. Mais comme le systeme est isolé,
c’est-a~dire sans interaction d’aucune sorte avec le monde extérieur (une définition
précise de cette notion sera permise par le premier principe), il y a homogénéité du
temps : I'époque a laquelle on connait ’état de ¥ n’influe pas sur son évolution
(figure 1.1.2).

£2(t)

Fig. 1.1.2 Homogénéité du temps.

Ainsi faut-il que les vitesses des variables d’état soient des observables,
‘o doit o1
£ (t) = ¢*[¢ ()] (1.1.9)

b) Le déterminisme laplacien impose une condition semblable aux changements
admissibles des variables d’état : ils doivent étre observables.
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Soit la transformation de variable

) )

€ (t) =¥°[E @), 1] (1.1.10)
admettant la transformation inverse
g (t) =g (1), 1). (1.1.11)
L’équation de mouvement de la nouvelle variable est :
N/ d / a
€ (t) = =€ () = s=v°[. ]€a+ ¢ Jooc]
dt g (1.1.12)

= ) 1.

Mais par a), £°(t) doit étre observable, donc aussi £®(t) :
€)' 9 e (1) (1.1.13)

c) Enfin nous pouvons appliquer ce qui précede a la transformation du temps méme,
qui est un parametre.

Soit la transformation :
g:t—gt)="1 (1.1.14)

admettant la transformation inverse

g it gl =t (1.1.15)

i) La conservation de la structure d’ordre de la droite du temps (1.1.1) impose
d’abord a ¢(t) la condition de monotonie croissante

dg(t)

0. 1.1.16
0 (1.1.16)

ii) Mais le déterminisme laplacien impose davantage. La transformation du temps
peut changer I'état du systéme : décrit par & (t) dans le référentiel ¢, cet état doit
étre égal a sa description € () dans le référentiel . Ainsi, pour une variable d’état

() = e(t), (1.1.17)

et la condition a) entraine :

(1.1.18)

(MToutes les fonctions envisagées, sauf mention expresse, sont réelles, définies sur les réels et de
classe C°.
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ce qui impose la linéarité de la transformation du temps. En effet, la condition
(1.1.18) ne peut étre remplie que si dt/d est une constante a™!, c’est-a-dire si

gty ="t=a-(t+1t). (1.1.19)

La transformation peut consister seulement en un changement de 'unité de temps
et en un déplacement de l'origine. Comme a peut étre > 0 ou < 0, I'inversion du
temps (a = —1;tg = 0 ) est donc admissible.

1.2 Entropie et deuxiéme principe :
a) évolution et b) équilibre

Comme nous venons de le voir, malgré les restrictions qu’il impose aux obser-
vables et au temps, le déterminisme laplacien reste impuissant a décrire le phénomene
de la fleche du temps. C’est le deuziéme principe qui détermine cette fleche, a condi-
tion de le formuler non seulement pour indiquer I’ évolution du systéme, ce qui est
encore insuffisant pour obtenir la fleche du temps, mais aussi pour préciser que cette
évolution se fait vers un état déquilibre. C’est donc a cause de son rapport étroit
avec le temps que nous exposerons le deuxieme principe avant le premier, rompant
ainsi avec l'ordre de présentation institué par Helmholtz, mais en accord avec 1’ordre
chronologique : le mémoire de Sadi Carnot " précede d’une vingtaine d’années les
travaux de Mayer et de Joule sur I’équivalence mécanique de la chaleur. Pour éviter
tout malentendu, nous conserverons néanmoins les dénominations traditionnelles.

Nous formulons donc le deuxiéme principe en deux parties : 2a) évolution et 2b)
équilibre. 11 est a remarquer que la condition d’isolement n’est pas la méme d’une
partie a l'autre : alors qu’il est total en 2b), il n’est que partiel en 2a); il y est
seulement adiabatique : des interactions de type géométrique sont admissibles. Mais
nous le répéterons encore une fois : ¢’est avec I’énoncé du premier principe que nous
pourrons définir sans ambiguité ces notions . Comme « isolé » est une condition
plus forte que « adiabatiquement isolé », nous noterons ’expression : « le systeéme
est adiabatiquement fermé » par ¥ = ¥ et 'expression : « le systeme est isolé » par
« X = Ygo ».

Enoncé du second principe

Pour tout systeme, il existe une fonction d’état extensive S : l’entropie du
systéme, qui satisfait aux deux conditions suivantes :

®)Cette unité est détreminée par un phénomene périodique de période t', c’est-a-dire tel que
Ex(t+t') = £¥(t) pour tout a. Pour la seconde, [t] = sec, on a passé de 'année tropique a la
pulsation d’une ligne d’un spectre Zeemann.

)« Réflexions sur la puissance du feu et les moyens propres a développer cette puissance »
(1824).

19E de ce fait, on pourra toujours arguer que, logiquement, le premier principe reste bien le
premier !
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2a) Principe d’évolution : si le systéme est adiabatiquement fermé, S est une
fonction monotone non décroissante du temps.

2b) Principe d’équilibre : si le systéme fini est isolé, S a un mazimum fini dans
le futur lointain.

Formulation du second principe

VY, 38 =5(t), S=3,854:

: d
2a) S(t) = —5(t) 2 0 pour T = %, (1.2.1)
2b) tli+m S(t) =5 =max < oo pour X = X

La plupart des traités ne donnent pour le deuxiéme principe que le principe
d’évolution 2a). Nous allons montrer que cela est insuffisant pour attribuer une
fleche au temps.

En effet, si nous pratiquons un renversement du temps T : t +— t = —t, nous
avons suffissamment de liberté pour introduire une entropie ‘S(%) qui soit fonction
monotone non-décroissante de % ; il nous suffit de compléter I'opération T par son
effet sur ’entropie :

T :S(t) — g(S(t)) avec % <0.

En particulier, le choix :

T:{“ﬁ%:_t (1.2.2)
S(t) = S(t) = —S(t)

donne lieu a la figure (1.2.1) :

S(t)p
B0,
: dt ~— ¢
PR *******************
1Q (1, :
as)
dt = :
V/S(/t)

Fig. 1.2.1 Principe d’évolution 2a); la méme courbe admet les deux sens
de parcours.

(ID1q topologie est celle de R ; elle sera a préciser dans le cas continu.
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C’est la deuxieme partie du principe, celle qui fixe un maximum pour 1’état
d’équilibre, qui rompt cette symétrie. En effet, le renversement du temps ne trans-
forne pas le maximum en un minimum. C’est un fait d’expérience (ce qu’on appelle
parfois, le troisieme principe) que ’entropie présente une borne inférieure; mais
cette borne inférieure n’est pas un minimum. En effet, si le systeme se trouve dans
son état fondamental attribué a cette borne inférieure, il ne peut en sortir que si
son isolement est rompu ' ; mais alors la condition 2b) n’est pas satisfaite dans son
intégrité. Nous avons donc la figure (1.2.2).

S’ =maximun

\ . Y
ici ¥ #£%y| S” =borne inférieure

Fig. 1.2.2 Principe d’équilibre 2b).

De la méme facon que le déterminisme laplacien impose des restrictions aux
transformations des observables et du temps, le deuxieme principe limite le nombre
des transformations admissibles de ’entropie, c’est-a-dire celles de ces transforma-
tions qui laissent précisément invariant le deuxieme principe.

Soit la transformation :
g:S—g(S)="5S. (1.2.3)
i) En ce qui concerne 'invariance de 2a), c’est-a-dire la monotonie non décroissante
de I'entropie par rapport au temps, notre discussion sur la fleche du temps nous
a déja livré la condition :
dg(S)
as
ou a est le coefficient de la transformation linéaire du temps (1.1.19). L’invariance
de 2b) donne la méme condition.

=0sia 20, (1.2.4)

ii) Mais 'invariance du caractere d’extensivité de l'entropie impose a la transfor-
mation g(S) d’étre linéaire. En effet, si nous désignerons par S* la restriction
de S au sous-systéme 24 et par ‘'S4 = g(S4) la restriction induite sur 'S, nous
devons avoir la suite d’égalités :

S = g(S) = g(Z SA> =35t = 3 g5 (1.2.5)

A
qui n’est satisfaite que si g(S) est linéaire, c’est-a-dire si

'S4 =p. (84 +54) 1, (1.2.6)

(2 e cas quantique est différent : il y a possibilité d’excitation spontannée!
(138" est donc une fonction linéaire et monotone de S, comme  Dest de t. Cela ne signifie
pourtant pas que t soit extensif (voir relativité générale).
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soit encore

'S=b-(S+5Sy) avec Sy = Z SE. (1.2.7)

L’entropie d'un systéme (ou d’un sous-systéme) n’est définie, une fois I'unité
fixée, qu’a une constante additive preés.

iii) Enfin, la compatibilité de i) et de ii) entraine la condition

b
- > 0. (1.2.8)

a

1.3 Energie et premier principe

Pour un systeme isolé, nous 'avons vu a propos du déterminisme laplacien, le
temps est homogene. Cette homogénéité du temps est reliée a la conservation au
cours du temps d’une grandeur caractéristique du systeme : son énergie H. C’est
une grandeur extensive, fonction d’état
Ennoncé du premier principe

Pour tout systeme, il existe une fonction d’état extensive H : I’énergie du sys-
teme, qui satisfait a la condition suivante :

Pour tout systeme, il existe une fonction extensive H : I’énergie du systeme qui
satisfait a la condition suivante :

si le systeme est isolé, alors H est constante.

Formulation du premier principe

VS, IH = H(t) = HEQ), H=Y,H*
. dH( (1.3.1)
P(t) o H(t) = dH(t) _ =0 pour ¥ = X,
ou P(t) est la puissance fournie a 3.

Nous pourrions indiquer la constance de 1’énergie par une autre formulation, a
savoir :

H(t) = H[E(t)] = H', (1.3.2)
Mais la formulation au moyen de la puissance présente un double avantage :

i) Elle indique clairement que I’énergie d’un systéme n’est définie qu’a une constante
additive pres, tout comme 'entropie.

ii) Elle permet de préciser par quels processus ’énergie est fournie au systéme a
partir du monde extérieur.

(DEt de ce fait est déja exclue la possibilité d’un mouvement perpétuel de premiére espéce : en
effet, ’énergie ne serait pas une fonction d’état !
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L’énergie peut étre transmise soit avec variation des variables géométriques, et
c’est le travail A, soit sans variation de ces variables, et c’est la chaleur ()" "'. Nous
nous trouvons devant la décomposition suivante :

H(t) = P(t) = Pa(t) + Py(t), (1.3.3)

avec P4(t) la puissance géométrique et Pg(t) la puissance non géométrique, soit, de
fagon équivalente apres multiplication de (1.3.3) par un intervalle de temps 6t > 0 :

dH[¢ (t)] = 6A +00Q, (1.3.4)

ou dH est la différentielle exacte de la fonction d’état H[¢ ()] tandis que 6.4 et §Q
sont des variations introduites de telle fagon que soient définis les rapports :

Mais conformément a ce que nous avons dit, Py(t) et 6.4 s’expriment en termes
de vitesses ou des variables géométriques. Nous ferons désormais la convention de
restreindre 1’emploi de la notation £%(t) pour désigner seulement les variables géo-
métriques ; nous indiquerons d’une autre facon les variables qui ne sont pas géomé-
triques. Ainsi :

ou (1.3.6)
SAE EE(t) 6g>(19,

ou nous introduisons les forces généralisées extérieures (ou incidentes) au systeme
=(e=t) (t) correspondant aux déplacements 0£“. Ces forces s’expriment par les va-
riables d’état de corps extérieurs au systeme considéré . Par conséquent, relati-
vement a X, en général ce ne sont pas des fonctions d’état, ce sont seulement des

fonctions données du temps.

La relation (1.3.6) spécifie également Pg(t) et Q) par contrecoup : c¢’est la puis-
sance et la variation d’énergie fournies au systéme qui n’ont pas la forme (1.3.6).

Nous tenons a souligner la relation du signe de d A et 6@ avec le systeme. Pour
des raisons historiques (la machine a vapeur produit du travail en consommant
de la chaleur), bien des traités prennent J.4 > 0 pour le travail produit par ¥ et
0Q) > 0 pour la chaleur fournie a 3. Cette convention ne fait que compliquer les
raisonnements. Notre relation (1.3.4) indique clairement que nous donnons le méme
signe au travail et a la chaleur suivant qu’ils sont tous deux fournis a ¥ ou produits
par . Un dH > 0 représente une élévation de I’énergie du systeme; 0.4 > 0 et
0Q) > 0 sont la variation de travail et la variation de chaleur fournies au systéme.

La relation (1.3.3) nous met en mesure de définir de fagon précise les notions
de « systeme isolés ¥ = Yoo » et de systeme « adiabatiquement fermé ¥ = g ».

(15) A pour lallemand Arbeit : travail ; Q est la notation traitionnelle.
(16)Nous utilisons la convention sommatoire d’Einstein : il faut sommer sur un indice répété en
haut (contravariant) et en bas (covariant).
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Un systeme est isolé si, simultanément, sa puissance mécanique et sa puissance
thermique sont nulles . Un systéme est adiabatiquement fermé si seule sa puissance
thermique est nulle. En formules :

PA(t):OetPQ(t):O < X=X
(1.3.7)
Po(t) =0 < S =1,

Généralisation du premier principe

La conservation de 1’énergie H est <_1"eliée a 'homogénéité du temps. On sait
que celle de la quantité de mouvement II est reliée a I’homogénéité de 1'espace, et
celle du moment cinétique M a Iisotropie de I'espace. Aussi conviendrons-nous de
généraliser le premier principe de fagon a englober toutes les grandeurs extensives
qui sont conservées.

Par conséquent, pour un systeme . isolé dans l’espace homogene et isotrope a d
dimensions (d = 3 pour I'espace physique), les composantes II; du vecteur covariant

quantité de mouvement II, et les (1/2)d(d — 1) ( = 3) composantes M du tenseur

antisymétrique moment cinétique M (vecteur axial) se conservent. De plus, si ce
systeme est substantiel "', de la covariance de Galilée (voir section 2.5), il suivra
également la conservation de la masse inerte M du systéme, un scalaire comme
I’énergie H.

1.4 L’élément de systéme ¥4

Notre nouvelle convention de ne désigner par & (t) que 'état des variables géo-
métriques nous oblige a récrire la relation (1.3.4) sous la forme

dH[...,&(t)] = 6 A +6Q, (1.4.1)

ou les 3 points représentent un certain nombre de variables non géométriques encore
a préciser. Les systemes les plus simples sont évidemment ceux ou il suffit d’une seule
variable non géométrique pour compléter la donnée de I'état. Ce sera précisément
notre postulat'’ que les élément de systéme ¥4 qui constituent les plus petites
parties en lesquelles on puisse décomposer le systeme Y posseédent une seule variable
non géométrique.

(7 La condition H(t) = 0 ne suffit pas & définir l'isolement d’un systéme. Par exemple, 1'énergie
du gaz parfait ne dépend que de la température. Par conséquent le systeme peut subir une
compression isotherme a énergie constante : il relache de la chaleur. On se trouve devant la
situation ott H(t) = 0 = P4(t) + Pg(t), avec Pa(t) = —Pg(t) # 0 : un tel systéme n’est
manifestement pas isolé.

US)Substance, du latin quod substat.

(Ne fait que cette proposition constitue un postulat est pleinement reconnu par I. Bazarow
(loc. cit.). Cet auteur utilise la température absolue 7' comme variable non géométrique du
sous-systeme.
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Cette variable non géométrique doit nous renseigner de fagon intrinseque sur
I’état interne de 1'élément de systéme ¥4, Certains auteurs introduisent a ce point
la température absolue T4 de 4. Nous préférons prendre pour variable non géo-
métrique de X4 son entropie S*. Ce faisant, nous utilisons pleinement, d’abord
I'extensivité de I'entropie S =) , S4, ensuite la remarque faite & la section 1.1 que
nous pouvons toujours prendre pour fonction d’état une variable d’état.

Ainsi, si le deuxieme principe introduit ’entropie S de ¥ comme fonction d’état,
le postulat sur les éléments de systéme introduit ’entropie S de ¥4 comme unique
variable d’état non géométrique.

Pour résumer, nous formulerons le postulat sur les élément de systéme 24 de la
maniere suivante :

¥4 est un élément de systeme <= état de 24 = {S4(1), &(1)}. (1.4.2)

L’indexation par A de la variable non géométrique, mais non des variables géomé-
triques, souligne une différence essentielle quant aux interactions, qui permet de
préserver l'extensivité de ’énergie. En effet, ’entropie est indexée par A, car elle
caractérise 1’élément de systeme X4 indépendamment de la valeur de 'entropie dans
tous les autres éléments de systéme YP. avec B # A, conformément & la nature
extensive de cette grandeur. En revanche, les variables géométriques £ ne sont pas
indexée par A, car elles dépendent également des autres sous-systemes dans la mesure
oll ceux-ci interagissent géométriquement avec 4. Cette maniere de tenir compte
des interactions présente 'avantage de préserver 'extensivité de I’énergie. En effet,
I'énergie H4 de ¥4 s’écrit

VA HA(t) = HA[SA(t), € (1) (1.4.3)

Les interactions possibles étant incluses dans la dépendance des & (t) énergies des
autres éléments de systéme, il n’est donc pas nécessaire d’introduire des énergies H4%
d’interaction géométrique entre 34 et X, ce qui assure 'extensivité de 'énergie H
du systeme entier :

H(t) =Y Ht)=H[S'(t),...,5%(t),&(t)). (1.4.4)

L’énergie est ainsi, en toute généralité, une fonction des 2 entropies S4(t) et des w
variables géométriques £°(t).

Mais avant d’entreprendre I’étude du systeme entier >3, nous allons nous occuper
de I’évolution de I’élément de systéme L4,

Notre but est, au moyen des deuxr principes, d’obtenir en principe les w + 1
équations de mouvement de ¥4, une pour Ientropie S4(t) et w pour les variables
géométriques £(¢). Si le principe d’évolution 2a) donne la premiére, en revanche le
principe d’équilibre 2b) permet de connaitre 1’état final de ¥4 sans avoir a passer
par la connaissance explicite des £%(t).
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1. — Du premier principe, le sous-systéme étant isolé ¥4 = ¥4, nous tirons :
. OHA[.. ] . OHA[.. ]
0= HASA(t), ()] = ——=64 + ——— ¢ 1.4.5
[S4(8),6(8)] = a8+ =g ee, (145)

olt H# est une observable, comme I'impose la relation (1.1.9) due au déterminisme
laplacien. Nous posons alors les définitions suivantes :

OHAL...) act 7.a

A _

[S4, €] (1.4.6)

est la température absolue T4 de X4 (la justification sera donnée plus loin) ;

OHA[.. ] 4o
o= 2L caenggn ¢ (1.4.7)
) aga
ot 22D egt 1a force élastique généralisée correspondant a la variable géométrique

&*. La force d’inertie, s’il y a lieu, y figure de la facon suivante : quand v est variable
d’état avec r, on posera

g — . def —(; N .
H,v = _:(el) n = —(inertie) 2

v —

dans la mesure ou H, = Mv (cf. point matériel, section 1.5).
Température absolue et force élastique sont ainsi des fonctions d’état

De (1.4.5), nous tirons de '’équation de mouvement pour S4, qui doit étre encore
une observable :

4 = SAISA®), € (0] = AL JEAUée, (1.4.8)
ou nous avons introduit les grandeurs suivantes :

Ar A ~.q def 1
TS ¢ = ———— 1.4.9
est la température naturelle 7 de X4. C’est une fonction d’état, continue (alors que
T4 présente une coupure en 74 = 0 : voir discussion plus loin). Ensuite, Erakl [S4, ¢
est la force de frottement généralisée correspondant a la variable gémétrique £7,
introduite de fagcon a assurer 1’équilibre des forces pour le systeme fermé :

Yo (BACD 4 2AUM[S £] = 0. (1.4.10)

C’est dans ce cas une fonction d’état également.

(20) Ainsi, pour £4, le premier principe s’énonce :
dHA = TAdsA — B4 gex = 5. A4 + 6Q4

et le cas des transformations réversibles T4dS4 = Q4 peut donc se traiter sans recours au
deuxieme principe !
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2. — Utilisons maintenant I'inégalité dS*/dt > 0, que nous fournit le principe
d’évolution 2a), en n’oubliant pas que la condition de fermeture adiabatique ¥4 =
3¢t autorise la présence de forces extérieures (d’origine géométrique) dépendant ex-
plicitement du temps. Nous ne nous trouvons plus, de ce fait, dans les conditions
d’isolement nécessaire a I’établissement du déterminisme laplacien. Par conséquent,
c’est la relation générale (1.1.8) qu’il nous faut prendre en considération ici, ou
I’équation de mouvement des variables et les fonctions d’état dépend explicitement
du temps. Ainsi, ‘ .
£ = £[S4(1), € (¢), 1]
et (1.4.11)
54 = SA154(t), € (1), 1]

ne sont plus des observables au sens de (1.1.6). Cependant, la température et les
forces élastiques restent des fonctions d’état en tout temps, puisque, par principe,
I'énergie H* en est une, a chaque instant ¢. En revanche, la puissance HA nest plus
une observable au sens de (1.1.6), puisque y figure des forces extérieures dépendant
explicitement du temps. On a :

HA(t) = HA[SA(1), £ (¢), 1]
= TA[SA(t), & (D]SA[S4 (1), €, 8] — BV [SA(), € (D)€ (1), & (1), 1] (14.12)
= PA(t) = 5D (DE[SA(8), €, 8).
A nouveau, nous introduisons une force de frottement généralisée de maniere que
les forces satisfassent au principe d’équilibre en tout temps t :

Va, Vi:EXD[SA(t), & (t)] + EAC (1) + BAUD[SA®R), £ (1),8] =0,  (1.4.13)

«

dont la relation (1.4.10) constitue un cas particulier (X = Xy entraine I’absence de
force extérieures). La force de frottement n’est plus une fonction d’état, puisqu’elle
dépend maintenant explicitement du temps (cependant, si elle disparait, autre cas
particulier, celui des transformations réversibles, alors la force extérieure devient
elle-méme une fonction d’état!).

Ainsi, généralisant 'équation de mouvement (1.4.8) pour S# de fagon qu’elle
satisfasse a la condition imposée par le principe 2a) :

§4 = A[SA®), £ IEAENSA®), £ (1)] > 0, (1414)

nous sommes amenés a faire de S4 une forme quadratique semi-définie non négative
en les vitesses des variables géométriques £*. Pour cela, nous posons :

BAUD[SA®), & ()] E —MA[S4(), € ()] €° [S4(2), £ (1), 1], (1.4.14 bis)

ou les coefficients \35[S*(t), & (t)] sont des fonctions d’état généralisant le coeffi-
cient de frottement. En effet, la dépendance explicite du temps de la force géné-
ralisée se trouve entierement reportée dans les vitesses des variables géométriques

ESA(1), & (8),1].
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En définitive,
IA(t) < SA184, &, 1] = (=124, [S4, €)(E2€9)[S4, &, 4] > 0. (1.4.15)

On voit que, dans cette forme, seule intervient la partie symétrique /\éé 8 des coef-

ficients /\éﬁ. Nous conviendrons d’écrire cette forme quadratique dans la notation
suivante :

{—m* Mo} = (Als/T4 > 070 (1.4.16)
Le signe des coefficients de frottement dépend donc de celui de la température. En
particulier, tous les coefficients de frottement diagonaux A2, ont le signe de T4.

La notation I représente le nom que nous donnerons & S* pour le sous-systeme
adiabatiquement fermé X4 = 3¢'. Cest la « source d’entropie » intérieure a X4, et
nous l'appellerons irréversibilité intérieure de X4

3. — Etudions enfin la restriction qu’impose a ¥4 le principe d’équilibre 2b).
A nouveau, le sous-systéme doit étre isolé : X4 = S
Nous avons donc & chercher le mazimum de l'entropie S* avec la contrainte sur
Iénergie HA -
SA =84 avec HA = HY. (1.4.17)

De la contrainte sur H*#, nous pouvons éliminer ’entropie comme fonction des va-
riables géométriques S4[¢7] et demander D'existence d’un état géométrique 5(0) pour

lequel SA[¢] prend une valeur maximale.

Nous nous trouvons donc devant les relations suivantes :

a) La condition de stationnarité pour 'entropie, donnée par la nullité de la premiere
variation de S4[¢]

sW5A[e] = SA[e] o> Lo, (1.4.18)

b) La condition de maximum pour I’entropie donnée par la non-positivité de la
deuxiéme variation de S4[¢]

5O 541e] = 54, 6g2 5¢” L 0. (1.4.19)

¢) Au lieu de calculer directement S“[¢], il nous suffit d’ailleurs d’en connaitre les
dérivées partielles S4[¢], en utilisant la variation de la contrainte

dHA[SA, €] = TAdSA + HA de> = 0. (1.4.20)
La substitution de (1.4.18) dans (1.4.20) donne ces dérivées partielles
A€
S = - 1.4.21
A1) =~ T (1421)

D Nous rappelons le critére des formes quadratiques semi-définies non négatives. Pour qu’une
forme quadratique semi-définie soit non négative, il faut et il suffit que tous les détermi-
nants issus de la matrice caractérisant cette forme et possédant pour éléments diagonaux des
éléments diagonaux de celle-ci soient non négatifs. De méme, tous les mineurs sont > 0.

22)Pour les transformations réversibles, voir section 1.11.
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La condition de stationnarité de l’entropie entraine donc la stationnarité de
[’énergie par rapport aux variables géométriques :

Eae[s4 £] = —HA[S4,£] =0. (1.4.22)

Pour la seconde variation de I’entropie, comme la température est une fonction
d’état TA[S4, £, il faut la varier ; mais puisque Hﬁé [S4,&] =0, on a simplement :

nyﬁ[SA> 6]

(1.4.23)
La condition de maximum de ’entropie entraine donc le minimum (resp. maximum)
de I’énergie pour T > 0 (resp. pour T4 < 0) par rapport auz variables géométriques.
En effet, la forme quadratique (1.4.19) est égale a

{Sfapl€1} = {=Hs[S%,€1/T [, €1} < 0, (1.4.24)

soit encore

{Higl - 1/T. 1} = 0%, (1.5.25)

Nous avons indiqué la symétrie des coefficients H ﬁéﬁ. Ainsi les coefficients diagonaux
H ”ia ont le signe de la température T4 : physiquement, ils représentent les grandeurs
d’inertie comme la masse inerte, la constante d’élasticité, etc. La détermination du
signe de ces grandeurs relativement a celui de la température entraine que la solution
des équations différentielles converge seulement pour un sens du temps, ce qui donne
lieu au phénomene de la fleche du temps. Mais plutot que de rester dans le cas
général, nous allons traiter un cas simple et particulierement démonstratif, celui de

loscillateur harmonique unidimensionnel avec frottement.

1.5 Exemple : 'oscillateur harmonique avec frottement

Considérons un oscillateur, c’est-a-dire une masse rigide et constante non nulle
M # 0 en mouvement dans un espace unidimensionnel (d = 1), comme un élément
de systeme thermodynamique. Son état est donc fixé par son entropie S et ses
variables géométriques qui, dans ce cas, sont la coordonnée rectiligne » d'un de ses
points remarquables et la vitesse v de ce point. Son énergie H a pour expression :

1
H=H[S,rv] = §MU2 + U[S, r]. (1.5.1)
La décomposition explicite de I’énergie en énergie cinétique Mv?/2 et énergie interne

U[S,r], indépendante de la vitesse, sera justifié plus tard au cours de 1'étude du
systeme continu (section 3.2).

(23)En changeant ainsi le signe de la forme quadratique, il faut prendre garde d’employer le critere
des formes semi-définies avant de changer le signe!
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1. — Du premier principe, 'oscillateur étant isolé, nous tirons

0=H[S,r,v]=Hg[...] S+ H,[..]#+ H,[..]v

f _ (1.5.2)
CTL. ]S = 2D ]+ Mo,

ol les trois points entre crochets représentent 'ensemble des variables d’état, Z(¢V
est réservé au seul o = r et

S=9[8rv=1.]29 . v (1.5.3)
avec la condition d’équilibre des forces
My — (B 4200, ] =0. (1.5.4)

Conformément a la remarque suivant (1.4.7), nous avons introduit la force d’inertie
Mwv, grace a la relation

I (1.5.5)

qui constitue ainsi I’équation de mouvement pour r. Celle pour S est donnée par
(1.5.3) et celle pour v par (1.5.4).

2. — Pour le principe d’évolution 2a), l'oscillateur constitue seulement un systeme
adiabatiquement fermé. Alors :

S[S,r,v] = (rEY).. Ju > 0 (1.5.6)

est rendu par la forme quadratique en v

TS )= (=N Jv* >0, (1.5.7)

ou l'on a introduit le coefficient de frottement A

UL 1Y AL (1.5.8)

(11

qui, par (1.5.7), doit avoir le méme signe que la température absolue 7T :

(=mN)[..]= /D). ] > 0. (1.5.9)

Les équations de mouvement de S et de r restent des observables. Il n’en va
plus de méme de celle de v, & cause de I'introduction d’une force extérieure Z(¢*9(t),
fonction donnée du temps :

HIS,r,v,t] =T[..] S —Z©[. ]+ Mvo = = (t)o, (1.5.10)
ce qui entraine pour 1’équilibre des forces

Mo[S,r,v,t] — (B[S, r,v] + BUD[S, r,v,t] + B (2)) = 0. (1.5.11)
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3. — Enfin, loscillateur étant a nouveau un systeme isolé, le principe d’équilibre
2b) impose les relations suivantes :

Les relations (1.4.20) H% = 0 s’expriment ici par

H,=—-E =0, <0
et (1.5.12)
H, = Myv <,
c’est-a~-dire par la nullité de la force élastique et de la vitesse. L’énergie H est
stationnaire par rapport aux variables géométriques r et v, et I'énergie interne U est
stationnaire par rapport a r.

Quant a la forme quadratique (1.4.23), elle se réduit a ses seuls termes diagonaux

H.,,/T =M/T >0,
ot (1.5.13)
H,,/T = a[S,r]/T > 0.

La masse inerte M a le signe de la température T'. Il en va de méme de la constante
élastique a[S,r].

Pour T' > 0, I'énergie H est minimale par rapport a r et a v (et I’énergie interne
par rapport a r).

On peut maintenant chercher la loi du mouvement a 1’approche de 1’équilibre.
A Téquilibre, I’état est donné par {Sy,az, €0}, soit

état d’équilibre = {S = Spa, 7 =10[S], v =0}. (1.5.14)

En approximation linéaire de cet état, on peut écrire ’énergie comme

1 1
H[S,r,v] = §MU2 + éao(r —19)? 4 U, (1.5.15)

ou agp, 1o et Uy sont des fonctions de S seulement, 'indice ¢ indiquant leur valeur a
I’équilibre.
Alors I’équation de mouvement (1.5.4) pour v s’écrit

Mb — ZE — 200 = MG 4 ag(r — ro) + Aot = 0. (1.5.16)

Les trois coefficients qui y figurent : la masse inerte M, la constante élastique aq et
le coefficient de frottement Ay ont tous les trois le signe de la température absolue
T d’apres (1.5.13) et (1.5.9).
On peut donc écrire (1.5.16) sous la forme de I’équation différentielle bien
connue :
(# — 7o) + 2v(F — 1) + wi(r —19) =0

avec (1.5.17)

Ao )
2’YZMZO et wS:MEO.

Selon le signe de v* — w?, on se trouve devant un amortissement faible ou fort.
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a) Amortissement faible : v* — w2 < 0.
L’équation caractéristique a deux racines complexes —y +iw (avec ©? = w2 —~?)
et la solution est de la forme

(r —710)(t) = (r — 1r)(0)e™" cos(Wt + §). (1.5.18)

L’équilibre s’établit de facon exponentielle pour le futur lointain t — 400.
b) Amortissement fort : v? —w? > 0.
L’équation caractéristique a deux racines réelles ( —y, et —y_ < 0) et la solution
est de la forme
(r—1o)(t) = Cre™ "' + C_e 7" (1.5.19)

(ou C4 et C_ sont deux constantes). Dans ce cas également, I’ équilibre s’établit
de fagon exponentielle pour le futur lointain

1.6 Principe d’évolution pour le systeme
adiabatiquement fermé et courants de chaleur

Nous passons maintenant a I’étude du systeéme entier ¥ sur le méme schéma que
celle pour I'élément de systeme X 4.

Considérons d’abord le systeme adiabatiquement fermé 3 = ¥y et appliquons-lui
le principe d’évolution 2a). La puissance thermique étant nulle, on a, pour X = ¥ :

H[SY, ..., 8% & 1] = Pu(t)

= A (1.6.1)

Mais si le systeme entier est adiabatiquement fermé, il n’en va pas de méme pour
chacun de ses sous-systemes 4. De la chaleur peut passer des uns aux autres. Aussi
devons-nous écrire

HA[SA &1 = P4(t) + P4 (¢) (1.6.2)

avec la restriction

Po(t) =Y Py(t)=0. (1.6.3)

La chaleur fournie & ¥4 ne pouvant venir que des autres éléments X2, B # A, il est
naturel d’introduire le courant de chaleur provenant de X8 et aboutissant a 4, que
nous désignons par Pé‘B (avec A «— B). C’est une grandeur antisymétrique dans
ses indices A et B, par sa définition méme :

B = =g = B (1.6.4)

CYUn cas ou I’équilibre est atteint dans un temps fini t,, est celui du frottement entre deux
solides rigides (la fonction r(t) est linéaire en t).
%) Dans la suite, nous omettons la référence explicite a la dépendance en t.
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La puissance thermique fournie & ¥4 s’exprime donc par la somme suivante :
A _ AB
Pi=Y P (1.6.5)
B

(évidemment PH* = 0).
Au lieu de (1.4.11), Péquation de mouvement de H* s’écrit maintenant
HA(SA, &,1] = TA[$%, €] §* + H s, €] &°

. (1.6.6)
— =6 (1) €2 + PA(),

d’ot1 'on tire ’équation de mouvement de S4 en utilisant les notions d’irréversibilité
intérieure I4 et de la température naturelle 74

SA=T1*—14P5 > 0. (1.6.7)

En multipliant par ¢ > 0 et en tenant compte du fait que I4 > 0, on obtient
I'inégalité

A
ds* > 5%. (1.6.8)

C’est cette inégalité qui nous permet de donner & T4, jusqu’ici une simple écriture
pour OHA[...]/0S4, son sens physique de température absolue. Elle n’a de sens en
effet que si I’élément de systéme X4 est en équilibre thermique, c’est-a-dire posséde
une température TH.

Passant au principe d’évolution pour X, nous I’écrirons sous la forme
) : 1
_ A _ A+ AB
S=) 84=>3"1 +2221 > 0, (1.6.9)
A A A B
ol nous avons introduit les sources mutuelles d’entropie 142, définies par la relation
AB def A B\ pAB
7= (" = 17)P5”. (1.6.10)
Cette définition entraine la symétrie des indices A et B :

JAB — [BA _ [(4B) (1.6.11)

Comme dans (1.6.9) les deux sommes sont indépendantes (I’échange de chaleur ne
saurait modifier l'irréversibilité intérieure due au frottement des variables géomé-
triques), il s’en suit que la double somme sur les sources mutuelles d’entropie doit
également étre non négative. On assure cette condition en posant

PSB def Z Z RABCD (7C _ 1Dy (1.6.12)
c D

¢’est-a-dire en introduisant une forme quadratique dans les paires en 7 :

{rABCPY > 0. (1.6.13)
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En écrivant explicitement cette forme, il est facile de vérifier que les coefficients
rABCD dits coefficients de transfert de chaleur généralisés, sont antisymétriques en

chaque paire et symétriques par paires :
RABCD — gUABLICDD G g% ¢, (1.6.14)

Ce sont des fonctions d’état.

A ce point, une simplification importante intervient si nous restreignons la dé-
pendance du courant de chaleur entre £4 et X8 4 la seule dépendance de l’état de
¥4 et de Iétat de XP. Cette restriction est en accord avec I'expérience physique.
Ainsi de la définition (1.6.12), nous ne retenons que les termes ou C' = A et D = B,
pour obtenir la nouvelle définition

PC?B def —F;AB(TA—TB). (1.6.15 7')

La condition sur la forme quadratique devient une simple inégalité :
RAB = gM1B) > 0 (1.6.16)

et le coefficient de transfert de chaleur de ¥ & ¥4 (par rapport a I’échelle 7),
fonction d’état, est symétrique dans les indices A et B :

RAB = gAB)[gA GB ¢ (1.6.17)

On voit alors que le courant de chaleur PA” est positif si 7% > 74. D’aprés
une convention bien établie, la chaleur est réputée passer d’un corps « chaud » a un
corps « froid ». On dira donc que X2 est « plus chaud » que 4. Et on dira de la
variable 7 qu’elle réalise 1’ échelle naturelle de la température. Elle s’étend du « froid

au chaud » de fagon continue, selon la droite
—0 <7< +0x0. (1.6.18 7)

Une conséquence immédiate est qu’il faut ranger la température absolue T selon la
droite
+0<T <4o00=-00<T<-0. (1.6.18 T")

De ce fait, les températures absolues négatives sont plus chaudes que les tempéra-
tures absolues positives! De plus, la température T = +0 représente une coupure,
physiquement inaccessible

Par conséquent, on peut récrire la définition (1.6.15 7) pour 'échelle des tempé-
ratures absolues, & condition que T4 et T? soient du méme signe
P(S‘B — —KJAB(TA o TB)
avec (1.6.15T)
kAP = RAB JTATP et signe(TAT?) = +1.

(26)Nous reviendrons sur la continuité de la température en 7 = 0 au sections 1.11 et 1.12, et &
I’inaccessibilité de T' = +0 a la section 4.9.
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1.7 Principe d’équilibre pour le systéme isolé

Pour 'application du principe d’équilibre, il nous faut maintenant isoler le sys-
teme entier ¥ = Y. Son énergie, fonction des 2 entropies S4 et des w variables
géométriques £%, voir (1.4.4), devient une constante :

H[S', ... 8% ¢]=H'. (1.7.1)

Pour trouver le maximum de I'entropie en tenant compte de la contrainte sur I’éner-
gie, nous allons encore utiliser la méthode d’élimination d’une des variables'~''. Nous
éliminerons une des entropies, disons S, comme fonction des {2 — 1 entropies res-
tantes et des w variables géométriques :

R CER L o (1.7.2)

De ce fait, a cause de son extensivité, 'entropie totale S est fonction des mémes
variables que S :

S=8[S",...,8 &1 =) 'S+ 89S, ..., 8 ¢] (1.7.3)
A

g / Q-1 9 c
avec la notation >, = > ,_; et nous en cherchons le maximum libre.

Nous exprimons d’abord la variation de (1.7.1)

SH[..]=T2[... 55%2 T[] 654 + Hy[.. ] 66 2 (1.7.4)

et celle de (1.7.2)

554 Z SEal. J6SA + S2[.. Joe” (1.7.5)

dont la comparaison, & la condition que T # 0, donne les relations

SUal.. ] = =TT ) et S2L.. ] = (=Ho/TY)... . (1.7.6)

1. — La condition de stationnarité de I’entropie s’obtient par la nullité de la pre-
miere variation de (1.7.3) et donne ainsi deux relations :

SWSL. ] =" 684 + 65 ] =0 (1.7.7)

et
Z S gal.. J65A + S,[.. Joc™ 0. (1.7.8)

") Une autre méthode, celle des multiplicateurs de Lagrange, sera présentée a la section suivante,
en concurrence avec celle d’élimination.
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Par identification de ces deux expressions et compte tenu de (1.7.5) et (1.7.6), on
obtient, pour A=1,2,...,Q—1:

Sgal...] =1+ S%A[. =1 (T4/TY)].. ] doit
(1.7.9)

Sal-.]=82.. ] = (—Ha/TH...] 20,

)

La condition de stationnarité de I’entropie entraine celle de [’énergie par rapport aux
variables géométriques, résultat déja acquis pour I’élément de systeme $4 :

B[] =—H,[..] (1.7.10)

Mais nous nous trouvons maintenant devant une condition supplémentaire : celle de
l’équilibre thermique de Y. Toutes les températures des sous-systémes doivent étre
égales, pour A=1,2,...,Q—1:

== (1.7.11)

ce qui nous autorise a parler de la température T' du systeme Y. C’est a cette seule
condition d’équilibre thermique dans tout le systeme qu’il est possible de dire que
le systeme a une température. On voit que le concept de température n’a de sens
que pour un systéme da [’équilibre thermique (tandis que, par postulat, I’élément
de systéme X4 est toujours en équilibre thermique, et possede donc toujours une
température).

Dans le cas de [’équilibre thermique, 1’état de X ne dépend donc plus que d’une
seule variable non géométrique : son entropie totale S. En effet, joignant au systeme
des Q2 — 1 équations (1.7.11) celle donnée par 'extensivité de Uentropie S = >~ , S4,
on détermine les ) entropies S comme fonction de S et de ¢ seulement ; ainsi, a
I’ équilibre thermique :

S4 = 84S, ¢]. (1.7.12)
Par conséquent, introduisant une nouvelle fonction H [S,&] pour I'énergie, définie
par

H[S, &1 ¥ H]...,S4[S,¢],...,€] (1.7.13)

et dont la variation sera donnée par

SHI[S, €] = H 4[S,£]6S + H,[S, &€

déf(SH[...,SA,...,E'] (1714)
— ZH,SA[. L8R €108 A+ H[. .., 84, .., €]0¢,
A

la condition de stationnarité de I’entropie entraine les formes suivantes pour 1’équi-
libre thermique et la nullité des forces élastiques :
Hg[S,&]=T[S,¢] (1.7.15)
et
H,[S €] =H,[...,584[8,¢],...,&] = 0. (1.7.16)
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C’est un cas particulier a I'energie que H, = H,. En général, pour une fonction
) ) 9

quelconque F[S, €] . F[...,84[S,¢&],...,&], on n’a pas égalité entre Ea et F,, car

FolS,6]1=) FsaS4[S, 6]+ Fal...,5%,...,¢].
A
Mais ici,
Hga=T*=T=Hg.

Pour la suite du présent calcul, nous ne signalerons donc plus la distinction entre
Het H.

2. — Pour la recherche du maximum, il s’agit de varier encore une fois la relation
(1.7.8) et de demander 'inégalité
88 )= ") " S 5a5s05455"
A B
(1.7.17)

doit
+2) " 845 6546E° + S ap 66%56% < 0.
A

Pour calculer les dérivées partielles secondes de S, il faut tenir compte du fait que les
températures T4, fonctions d’état T4[S4, & ], sont a dériver également. Par consé-

quent :
A A QA A §A
T'sp = T'ga5 g8 = T540p

(1.7.18)
70, = 70058, = 1%
On calcule alors facilement :
S7sA5B = —(5ST§A + T%Q)/T
S“S'Aﬂ: _<H,SA,3_H,SQﬁ)/T (1719)

Sap = —H o3/T.

La condition de maximum pour S se trouvera satisfaite si on assure la non négativité
de la forme quadratique semi-définie a (2 — 1) + w lignes et colonnes

(05T 54 +T%a)/T (Hgap — Hgop)/T
> 0. (1.7.20)

(H o5 — Hoga)/T H o3/T

Si 'on ne considere qu’une variation des variables géométriques, on retrouve encore
une fois que la condition de maximum pour ’entropie entraine celle de minimum
(resp. mazimum) de 1’énergie pour T" > 0 (resp. pour 7' < 0). Le principe de
stabilité de [’équilibre en mécanique s’obtient ainsi comme conséquence des principes
thermodynamiques.

Inversement, gardant fizes les wvariables géométriques pour envisager une va-
riation des seules variables d’entropie, nous nous trouvons devoir assurer la non-
négativité de la forme quadratique semi-définie :

{(64T 44 + T%)/T} 2 0. (1.7.21)
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Cette forme est en fait équivalente a la suivante :
{65(CH T+ (CH) 1) >0, (1.7.22)

oll nous avons introduit la capacité de chaleur C* du sous-systéme ¥4 (dans I’échelle
T) d variables géométriques constantes définie par

déf TA aSA[TA7 6]

ArpA ¢
el NS e

(1.7.23 T)

ca=cte

Cette définition implique donc que nous fassions de 'entopie S de ¥4 une fonction
de T4 et de & : SA[T#, &), obtenue par résolution de

A det (OHA _ mAQA £
g _(asA)[...]_T (54, €] (1.7.23 S)
par rapport a S4. La variation de I’énergie H4 s’écrit alors :
A[TA ¢
sHASA, ¢] = TA[5A, £1654 = 495 & [TA’ o
oT (1.7.24)

L CAITA £16T4 & & = cte.

Puisque, a 1’équilibre, T4 = T = T, la forme (1.7.22) est bien équivalente a la
forme (1.7.21), obtenue précisément en laissant & constant. Le critére des formes
quadratiques semi-définies appliqué aux éléments diagonaux livre alors les 2 — 1
inégalités, pour A =1,2,...,Q—1:

CHH(CH >0. (1.7.25)

On voit qu'une condition suffisante est la non-négativité de chacune des capacités
de chaleur C4 :
A=1,2,...,Q; CAT4, ¢ > 0. (1.7.26)

C’est aussi une condition nécessaire, ou presque. En effet, C4 et C** ne peuvent étre
simultanément négatives. Mais on peut avoir le cas ou une seule des capacités, soit
C%, est négative, les autres C4 (A = 1,2,...,Q — 1) étant toutes positives. Il faut
alors que |C®| > C4 VA € {1,2,...,Q — 1}. Dans le cas discret, on ne peut donc
exclure le cas pathologique d'une seule capacité de chaleur, négative, infiniment
grande, c’est-a-dire d'un réservoir de chaleur qui ferait descendre la température
d’un systéme en lui fournissant de la chaleur!

C’est seulement avec le cas continu que la condition C4 > 0 VA se présente
comme rigoureusement nécessaire (voir section 2.6) ; 'argumentation suivante y est
vraie, alors qu’elle n’est qu’approximative dans le cas discret. En effet, si 'on fait
I’hypothése que le systéme ¥ contient un trés grand nombre de sous-systémes ¥4,
dont beaucoup sont identiques quant a leur structure et quant a leur état, alors il
est possible de choisir précisément X% comme un sous-systeme identique & I'un des
autres ¥4, et de ramener ainsi la condition (1.7.25) a la condition triviale

2(CH~1 > 0. (1.7.27)



28 Principe d’équilibre pour le systeme isolé

Ainsi, contrairement aux grandeurs d’inertie, les grandeurs purement thermiques,
capacité de chaleur et coefficient de transfert de chaleur, sont positives indépendam-
ment du signe de la température.

De la définition méme de C# (1.7.23 T), nous tirons alors la relation que la
dérivée partielle & variables géométriques constantes (S4[T4, &) /OT4)e. doit avoir
le méme signe que T4, c’est-a-dire que, & variables géométriques fixes, ’entropie
est une fonction monotone croissante (resp. décroissante) pour T > 0 (resp. pour
T <0).

Mais, comme nous ’avons souligné en fin de la section précédente, si 'on veut
exprimer 'entropie et 1’énergie comme fonctions continues de la température en tant
que wvariables continues, c’est a 1’échelle T des températures naturelles qu’il faut se
référer.

Nous définirons donc la capacité de chaleur C4 de ¥4 par rapport a l’échelle T,
a variables géométriques fizes, par la relation similaire & (1.7.24) :

SHAITA €] < CAstA & & = cte. (1.7.28)
Du moment que 67 = T~26T, on a la relation entre les capacités C4 et C4 :
C4 =cHT*? >0. (1.7.29)

C4 est également non négative pour tout A.

Par conséquent, de la définition méme de C# donnée en (1.7.28), nous tirons la
proposition :

A wvariables géométriques € constantes, l'énergie H* est fonction monotone de
la température naturelle T (cf. figure 1.7.1).

T4 HA §A

Fig. 1.7.1 Température absolue T, énergie H” et entropie S4 comme
fonction de la température naturelle 74, pour un élément de systéme X4, &
variables géométriques £% tenues constantes.
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Pour 'étude de 'entropie S4[74,¢] en fonction de 7, il faut faire attention que
la relation similaire & (1.7.21) s’écrit maintenant

G 61 =~ s A larY)| (1.7.23T)
en effet :
SHA[SA, ¢] = T4654 = TADSA[A, €] /aTAL' . (1.7.30)
Nous avons par conséquent la relation
dSA[r4,€]/0r* a le signe contraire de 74, (1.7.31)

ce qui signifie que l’entropie est fonction monotone croissante pour T < 0 et mono-
tone décroissante pour T > 0.

Ce résultat est bien conforme avec celui obtenu au moyen des températures
absolues T', mais vu la continuité de la variable température naturelle 7 et la dif-
férentiabilité des fonctions d’état (au moins de classe C?), nous sommes & méme
maintenant de préciser le « raccord » entre les deux branches de la courbe :

enT=0, S présente un mazrimum. (1.7.32)

Ce maximum est confirmé d’ailleurs par la thermodynamique statistique.

Cette situation a pour conséquence que, si I’énergie H? est bien fonction mo-
notone croissante de 74, elle est en revanche fonction bivalente de S*, toujours a
variables géométriques tenues constantes. Pour 7 < 0, la pente est positive et crois-
sante, devient infinie en 7 = 0, puis est négative décroissante pour 7 > 0. Cela
détermine deux courbes possibles, a sens de parcours opposé (ce sens étant celui de
l'accroissement de 7) (cf. figure 1.7.2). Mais seul 'un d’eux se trouve réalisé puisque
I’énergie est fonction croissante de 7.

HA

T

A
/TA<O TA>O\S

Fig. 1.7.2 Energie H* comme fonction de I'entropie S pour un élément

de systéme ¥4, & variables géométriques £* tenues constantes. Les fleches

indiquent le sens croissant de 7. Seule la courbe de gauche est compatible
avec la monotomie croissante de H selon 7.

Cas particulier : systeme a deux composantes

Soit le systéme Y composé de deux sous-systemes L4 et LF seulement (par
conséquent {2 = 2) en contact thermique. Le systéme X est adiabatiquement fermé
Yo et les variables géométriques sont tenues constantes : 06* = 0 Vau.
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L’évolution thermique est gouvernée par le systeme d’équations

HA _ C—,A7-_A _ PélB — —RAB(TA o TB)
(1.7.33)
HP = CB#8 = PB4 — —gAB(rB — 74),
soit d
S =00 = =7 = (@) (17:34)

ou 'on a posé :
142184, 5%,¢] = r“4P) ((C*Arl + (éBrl) =B34, 85 ¢]>0.  (1.7.35)

Dans ’approzimation linéaire (14 — 1% — £0), 4P peut étre considéré comme
une constante 7y et, encore une fois, [’équilibre s’établit asymptotiquement pour
t — +o00:

(74 = B)(t) = (14 = 7P)(0)e™ " ; 44 > 0. (1.7.36)

Dans cette approximation, d’ailleurs, la condition plus faible (C4)~! 4 (C®)~! > 0
suffit pour que 79 > 0

1.8 Meéthode des multiplicateurs de Lagrange

Le principe d’équilibre conduit a rechercher le maximum de I’entropie d’un sys-
teme fermé, dont I’énergie est par conséquent conservée, ainsi que d’éventuelles
autres grandeurs extensives. La méthode d’élimination consiste a éliminer de 1’état
autant de variables qu’il y a de contraintes et de rechercher le maximum libre de
la nouvelle fonction de I'état ainsi réduit. La méthode des multiplicateurs, due a
Lagrange, consiste a tenir compte des contraintes en les ajoutant, multipliées par
un facteur constant approprié, a ’entropie et a rechercher le maximum libre de la
combinaison linéaire ainsi construite. Cette deuxieme méthode présente l'avantage
d’une plus grande simplicité. Cependant, elle n’est pas completement équivalente a
la méthode d’élimination quant a la recherche d’un maximum lié par une ou plusieurs
contraintes. Les deux méhodes sont completement équivalentes pour la condition de
stationnarité (ou d’extremum), elles le sont également pour la condition de maxi-
mum mais seulement dans le cas continu. Dans le cas discret, comme nous allons le
montrer, il suffit bien d’'un maximum de la combinaison linéaire pour entrainer le
maximum lié, mais la réciproque n’est pas vraie.

Dans cette section, a des fins de comparaison, nous présentons successivement
) )
I'une et 'autre méthode, d’abord pour une seule contrainte, puis pour plusieurs.

1. — Recherche de la stationnarité par la méthode d’élimination (une contrainte)

Soit F' = F[¢] une fonction de w variables £*(a, 3,... = 1,2,...,w < 0),
soumise a une contrainte

Gl = & (1.8.1)
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La premiere variation en est, en mettant en évidence la variable £ qui sera éliminée,
SWGIE] = GulE106” + G ul€ 106" =0, (1.8.2)

ou l'indice primé court de 1 a w — 1 (a,3,... = 1,2,...,w — 1), d’ou la notation
¢ = {£2}. On a donc pour la variation de £ :

36 = (—G'G )[€]0€", (1.8.3)

ce qui, par intégration, nous donne la variable £“ en fonction des w — 1 autres
variables :

£o=gvlel,e?, ... e = €] (1.8.4)

Nous avons posé :

OE“[€")/0e™ = g4 [¢", ¢

(-GG r)lE] (1.8.5)
Procédons de méme pour la premiere variation de F'[¢]
SVFIE] = Ful£10€” + Frl€10€", (1.8.6)

forme que nous pouvons écrire maintenant, par substitution de (1.8.3),

/7

SWFIE] = (Fra — FuGL'G ) [€106". (1.8.7)
Nous pouvons donc introduire la fonction F[¢"] de w — 1 variables
F=Fig¢e,.. . e =Fl¢], (1.8.8)
a condition d’identifier les dérivées partielles
Vo Fole'] = (Fa — FuGL'G €] (1.8.9)

La condition de stationnarité ou d’extremum pour F'[{] liée par la contrainte G[{'] =
G’ est donc équivalente a la condition d’extremum pour la fonction a variables

A

réduites F[¢"] :

/

F[¢"] = extremum <= F[¢'] = extremum lié par G[¢'] = G'. (1.8.10)

2. — Recherche de la stationnarité par la méthode des multiplicateurs de La-
grange (une contrainte)

On forme la combinaison linéaire
wle] = Fle] +9GlE], (1.8.11)

ou ¥, le multiplicateur de Lagrange, est d’abord une constante avec dimension, dont
on verra par la suite que c’est une fonction d’état.



32 Méthode des multiplicateurs de Lagrange

Formons la premiere variation de W[¢'| en gardant 9 constant :
sVU[e] = sWF[e] + 96WGe], (1.8.12)

c’est-a-dire :
U o606 = (Fo +9G o)[§]06% (1.8.13)

Au lieu des w — 1 conditions (1.8.9) de la méthode d’élimination, en (1.8.13) nous
en avons maintenant w. Mais précisément, la w-iéme nous permet de déterminer le
multiplicateur dans les w — 1 premieres :

9 =9[6] = (—F.G.)IE],

. (1.8.14)
Voa: Uul]=Fanll]

Nous obtenons donc la condition de stationnarité ou d’extremum équivalente a celle

de F[¢] liée par G[¢] =G :

U[¢] = extremum <= F[¢'] = extremum lié par G[¢'] = G'. (1.8.15)

3. — Recherche du maximum par la méthode d’élimination (une contrainte)

Nous calculons la deuxieme variation de F[¢'] par variation de (1.8.6) :

SOFE] = FrowdE@0E” + Frapd€ 5", (1.8.16)

Frow=Frow = FuuG G o + FuG7G G a — FuG ' G - (1.8.17)

On obtient la méme forme pour }3’,/&/5 : il suffit de remplacer w par B dans les
quantités a deux indices.

Compte tenu de (1.8.3) pour 6§¢, de (1.8.5) pour &%, , de (1.8.14) pour o et de
(1.8.11) pour ¥, on peut récrire (1.8.16) de la fagon suivante :

SIFE] = (Vo + U awkis + Vb + V&) [€106667

R (1.8.18)
= §PF[g].

On obtient donc une condition équivalente pour le maximum de F' liée par G :

F[¢] = maximum <= F[¢'] = maximum lié par G[¢'] = G'. (1.8.16)

Remarque

Dans la dérivation (1.8.17), on varie chaque facteur, ce qui revient a dire qu’on
varie aussi ¥ considéré non pas comme une constante dans la méthode d’élimination
mais comme une fonction d’état. Il n’y a la rien d’étonnant : si ¥} est arbitraire
dans la définition (1.8.11) de W[¢'], il se trouve numériquement fixé par (1.8.14) en
fonction de D'état €. On peut méme alors introduire une fonction J[¢"] qui tient
compte de I’élimination de £“.
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4. — Recherche du maximum par la méthode de multiplication (une contrainte)

On obtient la deuxiéme variation de W[{] en variant (1.8.13), 9 étant tenu
constant.

Pour une variation compatible avec la liaison, on se trouve dans le cas particulier
ou §&¥ = 57‘,255/0‘, cf. (1.8.5), et on peut écrire :

SAU[E] = U o5 66* 66°
= (Vs + Vil + Vsl + U 0ulné) 56 §¢” (1.8.18)
= §@F[e],

N . * . . s ey 2 oG . . o0 .
ou la notation = signifie égalité conditionnelle. Ainsi, la condition de maximum pour

(A
{Uasl€]} = {Faplé] +9Gap[€]} <0 (1.8.19)

n’est pas équivalente a la condition de maximum pour F liée par la contrainte G = G'.
C’est seulement une condition suffisante :

U[¢] = max = F[¢] = max lié par G[§'] = G’ (cas discret). (1.8.20)

Elle ne devient également condition nécessaire que si les variations des variables £*
sont compatibles avec la liaison G[{'] = G'.

Dans le cas ot 0@ F[¢"] (resp. 6@W[¢]) disparaissent, on démontrerait de méme
que
V] =0« O F[¢'] =0,
N (1.8.21)
ST <0 = sWF[E] <0, etc.

Cette situation est particuliére au cas discret. A la section 2.6 traitant de cas continu
considéré comme limite du cas discret,

> oA — /dZ(f) (1.8.22)
A

S — dS(Z) = dV (%)s(Z),
w fini w continu, (1.8.23)
£ — £%(7)

nous établirons [’équivalence compléte des deux conditions de maximum :

U[¢(F)] = max < F[¢(Z)] = max lié par G[¢ (Z)] = G’ (cas continu). (1.8.24)

Ce résultat est tres important, puisque seul le cas continu est réalisé dans le
cadre de la thermodynamique phénoménologique qui elle-méme s applique a d’autres

(28)5() est le scalaire densité d’entropie.
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probléemes de la physique, en électromagnétisme, en relativité restreinte et en relati-
vité générale.
5. — Généralisation a plusieurs contraintes

L’introduction de plusieurs contraintes a la place d’une seule n’amene rien d’es-
sentiellement nouveau : des nombres, on passe a des matrices.

En effet, on indexe les contraintes, supposées indépendantes et au nombre de
m < w, w étant toujours le nombre de variables (o, 3,... = 1,2,...,w < 00), au
moyen d’un indice latin contravariant :

el =GY  (ah,...=1,2,...,m). (1.8.25)

Par conséquent, toutes les grandeurs figurant dans les paragraphes précédents 1. a
4. possedent maintenant un indice de plus, en général sommatoire. D’ou le passage
aux matrices.

La présence des m contraintes impose un autre changement ; au lieu d’une seule
variable a éliminer £, il y en a maintenant m, indexées du méme indice latin b.

En résumé, dans toutes les formules précédentes, on fera la substitution suivante :

G — G
(1.8.26)

w — indice latin a, b, ¢, etc.

Pour plus de clarté, nous donnerons les substitutions principales a opérer dans le
texte.

a) Dans la méthode d’élimination
G’/a — G?a
(,3,...=1,2,...,w—1) (,3,...=1,2,...,w—m)
nombre non nul G, — G%, matrice inversible

son inverse G ! — G son inverse

tel que
G;}GM =1— G;lef‘C =0

relation utilisée pour obtenir la dérivée

—G G 5= (G s — (G119 =—G."G%,G Y

a

-F,ww ? Fcb

gf;)a - g,laa’

b) Dans la méthode des multiplicateurs

Q9—>19aa

ou a est un indice covariant pour avoir sommation.
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Nous donnerons également la forme nouvelle que prennent les principales for-
mules. Il est vivement conseillé au lecteur de les retrouver comme exercice.

(1.8.2) — 6WG[¢] = G4[¢] 66° + G4, [¢] 66> (1.8.27)
0" = (=G, 1Ge)[E19" }

(1.83) — _ fﬁa[f'] 5

(1.
(189) —  Fal¢] = (Fa— FyG°G3,)[€]  (1.8.29)
(1.8.11) — U = F+9,G (1.8.30)
(1.8.14) — 9y = (—FpG70)[¢] (1.8.31)
F,'ab = Fip — F,ch;llCG?a
(1.8.17) — +F.G G4, GG, ¢ (1.8.32)
_F,CG;lCGﬁab

1.9 Energie libre : F=H - TS
Appliquons la méthode des multiplicateurs a notre systéme fermé >qq, dont 1’état
est décrit par les 2 4+ w variables d’état de X :
{8, 82,...,8% ¢ €2 ... ). (1.9.1)

Nous cherchons donc a exprimer le maximum de ’entropie totale S en tenant compte
de la contrainte sur I’énergie qu’impose la fermeture du systeme, c’est-a-dire

S[St, S2%,..., 8% ¢] = max lié par H[S',S?,...,8% ¢] = H'. (1.9.2)

Nous savons que cela revient a construire une nouvelle fonction dont on cherche le
maximum (condition suffisante) :

U[S', $2,...,5% ] = (S +9H)[S,, §%,...,5% €]

(1.9.3)
— Z S4 + 192]—!’4[5’4,5‘] = max.
A A
Les conditions d’extremum donnent
Uor=1+0Hga=1+9T4=0
(1.9.4)
U, =9H,=—92¢ =0,
C’est-a-dire :
1) Le systéme posséde une température constante T :
VA, TA = -9 €T = cte. (1.9.5)

Il y a équilibre thermique entre les éléments de systeme 4. Dans le cas ot cet
équilibre n’est pas réalisé, parler de la température d’un systeme n’a pas de sens.
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2) Les forces élastiques (pour le systéme entier, mais pas forcément pour chaque élé-
ment du systéme) sont nulles (extremum de I’énergie par rapport aux variables
géométriques).

Ces résultats sont exactement ceux donnés par la méthode d’élimination (1.7.10)
et (1.7.11). Il n’en pourrait étre autrement, puisque la condition d’extremum sur ¥
est équivalente a celle d’extremum sur S liée par la contrainte sur 1’énergie H.

Mais les conditions de mazimum donnent seulement une condition suffisante :

\II SASB \If SAﬁ
) ) <
(%SB L (1.9.6)

Cette forme, tous calculs faits, en particulier grace a

U gage = 9T gs = 9T 54047 = —(C*) 1647, (1.9.7)
peut s’écrire
(C«A)—l(;AB HsAﬁT—l
2 >
<H7as’BT1 HoT ) 2 0, (1.9.8)

forme plus simple que la forme (1.7.20) obtenue par la méthode d’élimination. Mais
cette plus grande simplicité est gagnée au priz d’une perte de la condition nécessaire.
Le théoreme des formes quadratiques semi-définies nous permet de tirer les relations
suivantes :

1) Les capacités de chaleur C* sont toutes positives :
VA, (CH 71648 >0 = C* > 0. (1.9.9)

C’est le résultat que nous avons obtenu par la méthode d’élimination, comme
condition suffisante, mais en vertu d’un raisonnement qui ne pouvait étre rigou-
reux.

2) On obtient de méme, mais seulement comme une condition suffisante, alors que
la méthode d’élimination donne ce résultat comme une condition également né-
cessaire, que I'énergie H ait un minimum (resp. un maximum) pour T > 0 (resp.
pour T' < 0) par rapport aux variables géométriques

{H . T '} >0. (1.9.10)

On peut alors se poser le probléme suivant, équivalent au précédent dans la me-
sure ou la condition de maximum pour ¥ est également nécessaire (ce qui, rappelons-
le, est effectivement réalisé dans le cas continu) :

Etant donné une entropie S = Y, SA = S’ fizée, chercher la condition de
minimum (resp. mazimum) pour l’énergie H selon que T > 0 (resp. T < 0) par
rapport auz variables géométriques.

Nous avons donc a chercher maintenant, toujours par la méthode des multipli-
cateurs, une nouvelle fonction combinaison linéaire de H et de S, celle-ci multipliée
par un nouveau multiplicateur.
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Or il est extrémement avantageux de poser

B[S, 8%,...,8% &) = (H +9719)[S",S%,...,8% ¢]
_ ATQA ¢ -1 A
_ZA:H BhElE EA:S (1.9.11)

:{min } pour 19{<}0.
max >

En effet, ® n’est rien d’autre qu'un multiple de ¥ :
O =9 . (1.9.12)

Par conséquent, au signe pres selon la valeur de 4, les conditions d’extremum et de
mazimum de ® sont celles de W, c’est-a-dire (1.9.4) et la forme (1.9.8).

Jusqu’ici, il semblerait donc qu’il n’y ait aucun avantage a passer par ® plutot
que par V. Mazis en tenant compte de la condition d’extremum qui tmpose [’équilibre
thermique du systéme, ® ne s’exprime plus alors qu’a 'aide d’une seule variable
non géométrique, la température T du systéme X, et s’'identifie a la fonction F[T, ]
définie comme l’energie libre = du systeme Y possédant une température fixe T :

O[T, &1 Y FIT, €. (1.9.13)

On voit qu’on en revient alors a la méthode d’élimination. En effet, de la condition
d’extremum
Pga=Hga+9 "' =0, (1.9.14)

on obtient les 2 équations
Hga = H5a[S4, 6] = -0 =T =cte (1.9.15)
qui nous permettent d’éliminer les §) variables d’entropie S :
VA, S84 =S4T, ¢], (1.9.16)
d’ou
S=) S4=5[T,¢]=5. (1.9.17)
A
Les propriétés de ’énergie libre peuvent étre présentées de la maniére suivante :

1. — Tout systéme possédant une température posséde une énergie libre. Donc, a
fortiori, chacun des éléments de systeme $4 :

FATA, &) = HASATA,€),6) = TASA T4, ¢ (1.9.18)

est ’énergie libre de 1’élément de systéme L4,

N F est mis pour l'allemand Freie Energie.
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2. — L’énergie libre d’'un systeme est conditionnellement extensive :

F[T,&]=H[...,SAT,¢),...,6]—TS[T,&] ZFA (1.9.19)

En effet I'égalité = n’est valable que si tous les T sont égaux, c’est-a-dire seule-
ment si le systéme possede une température. En d’autres termes, [’énergie libre d’un
systéme sans température n’est pas définie, bien qu’on puisse le faire pour chacun
de ses éléments. Soit encore : seul un systeme en équilibre thermique peut avoir une
énergie libre.

3. — A l'aide de I'énergie libre, la condition de minimum (resp. maximum) de H
selon que T" > 0 (resp. T' < 0 ) par rapport aux variables géométriques s’énonce
ainsi :

Pour une température donnée T = T" I’équilibre par rapport aux variables géomé-
triques est obtenu en exigeant que l’énergie libre soit un minimum (resp. maximum,)
selon que T >0 (resp. T < 0) :

F[T,¢] :{min }<:>H[...,SA[T,§~]...,§'] ={mm }

max max
(1.9.20)
our T4~ %0 fixée
p < .
4. — L’énergie libre a requ son nom des ingénieurs, pour la relation qu’elle a avec
le travail qu’on peut récupérer d'un systeme. Varions F[T', ] :
SOFIT, &) = Fr[T,&] 6T + Fo[T,£] 66°
=0H[..., 84T, &),...,&] =T 6S - ST
(1.9.21)

= T4 65" + H, 66— T 68 — S 6T
A

=-S5 6T — E 5¢~.

Par identification nous obtenons l’entropie S et les forces élastiques E&d) comme
fonctions de la température T' et des variables géométriques £ :

Fo[T,¢] = Eael [T £

Si maintenant, dans la variation de F', nous maintenons 1" constante, il vient :

(1.9.22)

—dWF[T, ¢] = —SA. (1.9.23)
5T =0
A température constante, la diminution de [’énergie libre est égale au travail qu’on
peut en récupérer. Il faut maintenir la température constante, ce qui n’est évidem-
ment possible que si :
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1) le systéme ¥ est en contact avec un réservoir de chaleur () de capacité de
chaleur infinie,

2) les forces de frottement disparaissent, ¢’est-a-dire si la variation se fait infiniment
lentement (transformation quasi-statique, cf. section 12'").

Dans la nature, on a presque toujours affaire a des systémes entourés « d’une
seule température » : la température ambiante du milieu (), lequel fonctionne
comme réservoir de chaleur quasi inépuisable. C’est donc I'ensemble ¥ + X0 qui
constitue la « source » du travail —d.4 > 0 que récupere I'ingénieur, d’ou I'impression
de ce dernier d’avoir affaire a une énergie « a disposition », c’est-a-dire libre.

1.10 Systéme en contact
avec un ou plusieurs réservoirs de chaleur

Dans notre discussion de 1’énergie libre, nous avons été amenés a introduire les
concepts de réservoirs de chaleur et de transformation quasi-statique sans les définir
explicitement. C’est a leur étude que seront consacrés les deux sections qui suivent.

Et d’abord, le réservoir de chaleur.

Par définition, un réservoir de chaleur est un systéme 2 composé de ses
éléments désignés par X O4 au nombre fini de Qo) (A, B,...=1,2,...,Q) < 0),
en équilibre thermique, d’une capacité de chaleur trés grande et de coefficients de
transfert de chaleur également trés grands, soit en formules :

T©) — T(0)A 4

50, CO=3"CcO4 _— 400 (1.10.1)
A
FOAB) __, oo

Il peut étre réalisé approximativement par une réunion en nombre suffisamment
grand d’éléments (04 3 trés grands coefficients d’échange de chaleur.

Par les caracteres qui le définissent, on voit clairement qu’un réservoir de chaleur
peut, en cas de perturbation, rétablir son équilibre thermique dans un intervalle de
temps infiniment petit. Nous supposerons également qu’il en va de méme quant a son
équilibre mécanique, pour autant que son état dépende des variables géométriques

£ De plus, quelle que soit la quantité de chaleur —Q© qu’on lui fournisse'’",

(30)Meme pour les transformations irréversibles, on verra que I'inégalité
—6A < —6MF.

est encore valable.

GUEn vue des applications (couplage du réservoir avec une machine), nous noterons par —Q(®) la
chaleur fournie au réservoir, contrairement & ce que nous avons convenu pour ¥ et 4 quant
au signe.
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pourvu qu’elle soit finie, la seconde des relations (1.10.1) nous assure que 'élévation
de température AT© correspondante tend vers zéro. En effet, la relation doit étre
vérifiée :

—QO = COATO = COALO), (1.10.2)

1. — Couplage avec un seul réservoir de chaleur X

A la section 1.6, nous avons fait I’étude des courants de chaleur pour le systeme
= ¥4 adiabatiquement fermé ¥,. Nous retrouvons une situation identique si
nous considérons le systeme total () formé des deux constituants ¥ et 3. Nous
écrirons

ni) — %+ 5O, (1.10.3)
(tot)

est adiabatigement fermé. L’entropie étant une grandeur ex-
tot)

Il est clair que X
trensive, nous avons pour expression de S¢

St — g 1 SO, (1.10.4)
Nous pouvons donc raisonner sur trois niveaux : celui de 1’élément de systéme X4,
celui du systéme X, enfin celui de I'ensemble composé ()

a) pour ¥4, nous avons posé
g4 14 >, (1.10.5)

ot 14 est définie comme la source d’entropie de 4 ;
b) pour £5 = > , ¥4, nous avons posé de méme

Sﬁf[=21A+%ZZIAB > 0. (1.10.6)
A A B

I est défini comme [’irreversibilité intérieure de 3 ;

(tot)

¢) par conséquent, pour X =¥ + 2@ nous pouvons écrire

Gltot) — pltot) — 14 1(0) | Z]AO > 0. (1.10.7)
A

Le réservoir étant compté comme un seul élément, il est clair que seule la somme
sur A intervient.

T49 est exactement de méme forme que 47 :
140 = (74 — 7O pS = 14O > g, (1.10.8)

ot 70 est la température du réservoir et P)° le courant de chaleur allant du réservoir
a I’élément ¥4 du systeme . On peut appeler ) I49 Virréversibilité extérieure de
3.

L’inégalité (1.10.7) se laisse ainsi écrire sous la forme

§to) — & 4 §O — (1 — ZTAP50> + (IO - ZT(O)P8A> > (). (1.10.9)
A A
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Comme I et I sont définies non négatives et sont indépendantes de ’échange de
chaleur entre ¥ et X, nous tirons de 1a I'inégalité

0
_ ZTAPSO > —T(O)Pc(g) >0, (1.10.10)
A

en ayant posé
> Bt =B (1.10.11)
A

pour la puissance de chaleur fournie a ¥ par le réservoir £ ¢ la température 7).

En fait, seule 'évolution de ¥ nous intéresse. Si nous pouvons montrer que S est
bien égal & la premieére parenthése du membre de droite de (1.10.9), nous obtenons
I'inégalité

: A pAO
S>-) P >0 (1.10.12)
A

Par conséquent, les deux inégalités (1.10.10) et (1.10.12) conduisent a [’inégalité
fondamentale

§ > —7OpP = PO /TO, (1.10.13)

soit encore, sous une forme plus habituelle déduite de la précédente par multiplica-
tion par ot > 0 :

58 > —70 5Q© = 5Q© /7 (1.10.14)

L’augmentation d’entropie 0S d’un systéme X, muni ou non d’une température, en
contact avec un réservoir de chaleur est plus grande ou égale au rapport de la chaleur
QO fournie a X par X, a la température T©) de ce dernier.

Il est a remarquer expressément que cette inégalité tient, indépendamment du
fait que I’on puisse ou non définir une température pour le systéme 3 (alors que dans
I'inégalité correspondante (1.6.8) pour 1’élément de systéme ¥4, la température est
celle de ©4).

Nous avons obtenu ce résultat sous condition que S soit bien égal a I—Y , 74P3°,
qui figure dans la premieére parentheése de (1.10.9). Or il est manifeste que nous y
avons groupé tout ce qui, dans I’évolution de S se rapporte & ¥, donc a S.
Confirmation en est donnée par le calcul. Si l'on se reporte a la section 1.6, on y
trouvera [’évolution de l’entropie d’un élément ¥4 du systéme, cf. (1.6.7),

SA =14 — 1P}, (1.10.15)

Dans le cas présent, la seule différence est que, a coté des courants de chaleur P@“B
des autres éléments X7 vers ¥4, s’ajoute un courant de chaleur Pé‘o en provenance
du réservoir

P4 =) Pi5+ P{°. (1.10.16)
B
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Compte tenu de 'extensivité de S, ces deux dernieres relations conduisent a 1’égalité
cherchée

§=F 8t =S - SR - Ry
A A A B A
=1-) P
A

Notre inégalité fondamentale (1.10.13) ou (1.10.14) est donc établie. On peut d’ailleurs
la donner facilement sous forme intégrale, puisque la température 7@ du réservoir
est une constante :

(1.10.17)

tl/ 1"
QO = / dtPy (t) = / dtoQ®  pour 1" > ¢ (1.10.18)
4 /
et par conséquent
SN -8t =8"-58>QY/TY pour ¢">t. (1.10.19)

Cette derniere forme est a manier avec précaution. Elle suppose que le transfert de
la quantité de chaleur Q) s’opere sans altération de la température du réservoir, ce
qui n’est réalisé que si ce dernier est infiniment grand. Pour tout réservoir fini, on
ne peut opérer dans les mémes conditions qu’en prélevant une quantité de chaleur
infinitésimale 6Q© et, par conséquent, seule la forme différentielle est valable.

2. — Couplage avec plusieurs réservoirs de chaleur

Envisageons maintenant notre systeme X en contact simultané avec plusieurs
réservoirs de chaleurs ¥, 2. de températures constantes 7MW, T3

Du raisonnement précédent, il est clair que chaque réservoir contribue a S pour
un terme —T(i)Pg)(i = 1,2,...) indépendamment de tous les autres, et que par
conséquent la contribution totale a S de tous les réservoirs est la somme de tous ces
termes.

Nos trois formes de 1’inégalité fondamentale seront donc :

(1.10.20)
=P /TV + P /T 1 .
5S > _T(l)(gQ(l) _ 7(2)(562(2) T
(1.10.21)
=6QW /T 4 5QP/T® 4 .
S(t") - S(t) = 8" -8 = QW/TV +Q¥W/T™ + ... (1.10.22)

avec la méme réserve que précédemment sur la forme intégrale.
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1.11 Transformations réversibles

Rappelons I'inégalité fondamentale (1.10.13) :

§> =3 P30 > —rOPP > 0. (1.11.1)
A

Les transformations réversibles sont celles ou [’égalité est réalisée; elles sont carac-
térisées par

g — _T(O>pc(20> = —7P5 = Py/T (1.11.2)
ou
dS = —7© 5Q0 = _7O05Q = 5Q/T. (1.11.3)

Le travail et la chaleur fournis réversiblement seront désignés par A et Q.

Ainsi, 'augmentation d’entropie du systéme X lors d’une transformation réver-
sible est égale a la chaleur 0QQ = 0Q) fournie réversiblement a Y, divisée par la
température T de X.

1. — Une premiere conséquence de (1.11.2) et (1.11.3) est en effet que le systéme
est en équilibre thermique. 11 possede une température T égale a celle du réservoir
TO). Légalité exige que et Uirreversibilité intérieure I de ¥ et son irréversibilité
extérieure . , I? soient nulle. De (1.11.1) on tire immédiatement que

ZIAO _ Z(TA — 7O ps0 =0. (1.11.4)
A

A

Comme, dans cette somme, les courants de chaleur Pgo contribuent tous dans le
méme sens, et ne sauraient donc se compenser, il faut que chacun des termes qui la
composent soit nul, d’ou

VA : 74 =70 =7, (1.11.5)

Le systeme étant en équilibre thermique, son état ne dépend donc plus que d’une
seule variable non géométrique, I'entropie totale S, cf. (1.7.12) et (1.7.13). On passe
de H[...,S4,...,&]a H[S, &)

2. — Une seconde conséquence est que les transformations réversibles sont quasi-
statiques : les vitesses tendent vers zéro. En effet, par 1’équilibre thermique, on a
déja

P = —(r4 - P PSP =0. (1.11.6)
Pour que lirréversibilité intérieure I soit nulle, il faut donc que chacune des I4 =
A = Az T)fo‘ soit nulle séparément. Les forces de frottement disparaissent, ce
qui, vu leur définition (1.4.13), entraine la disparition des vitesses £~ (processus
quasi-statique).

Certains auteurs rendent équivalentes les notions de transformations réversibles
et transformations quasi-statiques, en exigeant de ces dernieres qu’elles comprennent
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une suite d’états d’équilibre. Nous ne les suivrons pas. Nous conserverons a quasi-
statique son sens primitif. Les transformations quasi-statiques forment une classe
plus nombreuse que celle des transformations réversibles, qu’elle contient. Comme
exemple de transformations quasi-statiques qui ne sont pas réversibles, on peut citer
la diffusion tres lente d'un gaz a travers une paroi : il n’est pas possible d’y décrire
une configuration macroscopique qui soit un état d’équilibre. Un autre exemple est
fourni par le frottement solide, décrit par

E(fr)[. ==L v = —%v = —usign(v)
v
+1 >0
avec sign(v) = ¢ =0 pour v{ = (1.11.7)
=1l <0
et (u/T)[...] =0
Alors : P
S(t) = T]v|(t)+—T (1.11.8)
donne, par intégration entre deux temps t' < t”,
tll P
St —-St)=5"-5 = / ﬂ|al7ﬁ| —|—/ dt——==~ olt ) (1.11.9)
t T t T

La premiere intégrale positive, en général, ne s’annule pas, méme dans la limite
v(t) — 0. Par conséquent :

Py(t) " 6Q
S — 5 > / dt—2 / ==, 1.11.10
- tl T ’ T ( )
Meéme quasi-statique, cette transformation n’est pas réversible.
3. — Une troisieme conséquence de la réversibilité est que les forces extérieures
deviennent des fonctions d’état, en équilibre avec les forces élastiques.
En effet, puisque ZU™[...] = 0, I'’équation (1.4.12) se réduit a
(EE[. ]+ EED (1), = 0, (1.11.11)

soit la relation X
2E0(t) = EE0[S(2), & (1)) = Ha[S(0), € (0)] (1.11.12)

(e «

Cette équation permet alors de diminuer le nombre des variables géométriques vrai-
ment effectives. Du grand nombre w de ces variables, seul un petit nombre W de va-
riables £*(,’3,... = 1,2,...%w < w) sont Couplees a des forces extérieures _(ext) [...]
Les autres variables z'nternes, désignées ici par & *“(0,’B,...=1,2,..., w = w) n’ap-
paraissent pas dans l’expression du travail

§A = =leot) geo = (et getr (1.11.13)
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On peut donc éliminer les variables internes par les relations

=[] = HumlS, 5,67 =0 (1.11.14)

comme fonctions de I'état réduit {S,¢"}
£ =S ¢ (1.11.15)
On considere donc des fonctions a nombre de variables encore plus réduit :

/4 def

F[S, 1< FIS,&,...,£%[8,€],..]. (1.11.16)
Si nous refaisons notre calcul pour 1'énergie H,

SOHIS, €] = H 4[S, €] 85 + Hu[S, €] 56°

def 2 / 7 ’

= sWH[S & ,...,£%S,¢],. ..
[ 75 Y 75 [ 75]’ } (1‘11.17)

- (H,S[S7£] + H,”a[SJ g]g,g[sa 5]) 05

+ (HalS, €1+ HyalS,616215,€71) 06%,
compte tenu de la nullité des coefficients en (1.11.14), nous trouvons
H[S,€'] = T[S, €7, (1.11.18)
H.[5,€" = 5[5, ). (1.11.19)

La température absolue T’ et les forces extérieures sont fonction d’état de l’entropie
S et des seules variables géométriques €.

En général, fI[S, 5"] représente l’énergie intérieure du systeme X et se note

Uls, &7 :

~

HIS, &1 ¥ Uls, €. (1.11.20)
La raison de cette définition est la suivante : si I’état géométrique est de la forme
{eoy ={...,v4,...,...,r4, ...}, Iénergie se décompose en
1
H[S, &= 5MA(UA)2 +UL..,84 ..., ..t (1.11.21)

A

c’est-a-dire, elle est somme de [’énergie cinétique et de [’énergie intérieure.

En général, on n’a pas de forces extérieures couplées aux vitesses. Mais H ,a[...] =
MAv4 = 0 implique que v* = 0 si M4 > 0 et par conséquent il ne reste plus que la
partie due a I'énergie intérieure U[S, r].

Dans le cas d’un fluide, 'ensemble {¢°} se réduit a une seule variable géomé-

trique, le volume V :
def

A[S, ¢ = A[s, V] ¥ Uls, v]. (1.11.22)
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La force généralisée extérieure correspondante est, au signe pres, la pression p :
Hy[S, V] =Uy[S,V] = —p[S,V]. (1.11.23)

De méme, (1.11.18) s’écrit

B[S, V] = Us[S, V] = T[S, V. (1.11.24)

Par suite, nous ne récrirons pas les formules pour le fluide. Il suffit de se souvenir
qu'il faut substituer, dans les formules générales, V & &" et —p[S, V] & E,(Ofm) [S, £].

4. — Transformations réversibles isentropiques et isothermiques.

Les transformations réversibles sont a 1’équilibre thermique en tout temps et
quasi-statiques. Pour effectuer de pareilles transformations, il faut ainsi une durée
t" —t' infiniment longue. Elle ne sont donc réalisable qu’approximativement.

On a
SWH[S, &) = $OU[S, €] = T[S, €7 65 + EL™[S, €7 66* = 6Q + 6.4,  (1.11.25)

—In

ot 6Q et 0.A sont la chaleur et le travail fournis réversiblement a X.

a) Transformations isentropiques

Soit : S = 5" ou 6S = 0, par conséquent le caractere isentrope implique
5Q =0
Q_ ,—,(eqjt) / 3 (11126)
A =2"1[5,¢]6¢7,

soit, sous forme intégrée,

"

t//
B -H = [ atPan) = [ 0,600 = A (1.11.27)
tl /
Elle sont donc adiabatiques.

b) Transformations isothermiques

On a avantage & utiliser I’énergie libre F[T,¢"] introduite & la section 1.9, ott on
élimine les variables intérieures £ @, et S par S = S[T, £'], solution de (1.11.25) :

FIT,¢'] = H[S[T,£,€"] — ST, €T (1.11.28)

Sa variation, compte tenu de (1.11.29) pour SO H, écrit

My

SWET, &) = —S[T, 10T + [T, £)6¢", (1.11.29)

soit encore
Fr[T, €)= -S[T, ¢, (1.11.30)
Eo|T, 1= 2T, ¢, (1.11.31)
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On a alors T = T" = T© (soit §T = 0) puisque X est en contact avec le réservoir
YO, Par conséquent :

SWH[SIT,€,€7] = 8D (F[TO, ]+ TOS[TO, ¢)

U 1.11.32
= 0Q + 04 =TO§S + =LITO ¢ ( )

soit, sous forme intégrée,

H' —H = /t dt(PQ(t) + Pg(t)> —Q+ A4, (1.11.33)
v
avec, a cause du caractere isotherme,
Q=TO9(S" -9
Ao /" —(ex) [T(O),fl'}dfla. (1.11.34)

(07

Les figures 1.11.1 et 1.11.2 font apparaitre clairement la différence dans la fa-
con dont est parcourue une isentrope reliant deux points a températures de signes
OpPpPOSES.

Pour la température absolue 7', il est impossible de joindre les deux points en
passant par T' = 0. T' = 0 n’existe pas : seuls T = +€ et T = —e (avec € > 0) existent
(correspondance avec T = —oo et 7 = +00). L'isentrope passe donc par T' = —o0 et
T = 400 qui sont identifiés.

Fig. 1.11.1 Isothermes (trait continu) et isentropes (trait interrompu) dans
le diagramme {7, S}.

T .
A
————— (1)
0+
| 0— 5
A (@)
S/: I 15//
A

Fig. 1.11.2 Isothermes (trait continu) et isentropes (trait interrompu) dans
le diagramme {7, S}.
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Pour la température naturelle 7, on peut passer par 7 = 0 qui est définie. Pour le
voir plus aisément, nous dessinons la figure 1.11.3 avec une seule variable géométrique

€*. Lénergie H = H[S, ] y est représentée par une surface. L’isotherme 7 = 0 est
le lieu des maxima de S pour les divers plans & = cte. Dans le cas ot le mazimum
de S dépend de €%, un plan S = S’ coupe en général cette surface en une seule
courbe reliant les deux signes de la température.

Il faut remarquer que la thermodynamique statistique impose une valeur fixe
pour S, indépendante de £©. (Tout au moins, dans le cas connu de systémes a
températures positives et négatives, celui des spins nucléaires, cf. section 1.12. En
toute généralité, le maximum de S peut dépendre de £©.) Par conséquent, I'isotherme
7 = 0 se présente comme une tangente de la surface au plan S = max, ce qui implique
que la trace de tout autre plan S = S’ sur cette méme surface n’est pas simplement
connexe : [’isentrope est formée de deux branches non reliées.

La thermodynamique phénoménologique en dit moins mais elle s’oppose a une
transformation réversible entre points a température de signes opposés. En effet, vu
la nature de l'isotherme 7 = 0 (lieu des maxima de S & £ = cte), la trace de tout
plan S = S’ sur la surface d’énergie H doit également présenter un maximum, ou plu-

t6t un minimum de £ & S = cte. Donc, la force extérieure E,(Ofmt) S,€"] = Hi[S, €],
a l'intersection de I'isentrope avec I'isotherme 7 = 0, passe par une valeur indéfinie
—(ext)

/ . 2 . . )
En 1S, € ]|r=0 = £o0. Cette indétermination de la valeur de la force extérieure nous
semble exclure un cas pareil.

Cet argument, pourtant, ne s’oppose qu’aux seules transformations réversibles.
Il ne dit rien quant a la possibilité de transformations irréversibles, question qui ne
nous semble pas encore résolue

S=9

Fig. 1.11.3 Surface d’énergie H = IEI[S, €"] (en gris foncé) coupée par un un
plan S = S’ (en gris clair) selon une isentrope qui relie des points &
température de signe opposés a travers I'isotherme 7 = 0.

G2H. G. Schopf, Ann. de Phys. (7) 9, 107 (1962).
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1.12 La machine périodique X = O

1. — Définition
La machine périodique ¥ = O est un systeme dont toutes les variables, les €2 va-

riables d’entropie S4 = S4(t) et les w variables géométriques €% = £%(t) parcourent
un cycle pendant la période t" —t' -

oS4 = SAH), VA; et =), Va. (1.12.1)
Ainsi toute fonction d’état F[...,SA(t),...,& ()] satisfait a
F'—F S F@" - F(t') = 0. (1.12.2)

En particulier le premier principe prend la forme :

H —H = / dt(Po(t) + Pa(t)) = j{(SQ + ]f(m _A+Q=0, (1123)
soit
—A=Q pour ¥ = 0. (1.12.4)

Si la machine périodique ¥ = O est en contact avec un ou plusieurs réservoirs de
chaleur, le deuziéme principe s’exprime par [inégalité fondamentale (1.10.13) (ou

autres formes) :
5QO
0> f{W (1.12.5)

ou le signe d’égalité est valable si la machine parcourt un cycle réversible ¢ = O.

2. — La machine périodique en contact avec un seul réservoir de chaleur

Principe de Kelvin-Thomson

Soit X(© le réservoir de chaleur. De (1.12.4) et (1.12.5) nous obtenons :
—A/TO = Q0 /70 <0, (1.12.6)

inégalité qui donne lieu a deux énoncés différents selon le signe de la température
TO) . Par commodité, nous désignerons ici par cété froid le demi-plan des tempéra-
tures absolues positives T' > 0 (7 < 0) et par coté chaud 'autre demi-plan T' < 0
(1 >0).

a) Ooté froid, T® >0 :

~A=Q® <05 T >0, (1.12.7)

On peut toujours transformer du travail en chaleur, mais 'inverse est impossible,
d’ou I’énoncé du principe de Kelvin-Thomson (W. Thomson, devenu Lord Kelvin) :
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1l est impossible au moyen d’une machine périodique ¥ = O de transformer de la
chaleur positive (Q(O) > 0) fournie par refroidissement d’un seul réservoir de chaleur
YO en travail récupéré positif —A > 0 si T > 0.

C’est 'impossibilité du « perpetuum mobile » de deuxiéme espece . On voit
que dans le coté froid, l’entreprise difficile qui va intéresser I'ingénieur est de retirer
du travail d'une machine par le moyen d’au moins deux réservoirs de chaleur.

b) Cété chaud, T® <0 :

A=-00 <0sTO <0. (1.12.8)

On peut toujours transformer de la chaleur en travail, mais I'inverse est impossible :
I’énoncé du principe prend ici la forme paradozale suivante :

Il est impossible, au moyen d’une machine périodique ¥ = O, de réchauffer
(—Q© > 0) un seul réservoir de chaleur X©) en fournissant du travail A > 0 si
TO < 0.

Le paradoxe est que 'entreprise difficile qui va solliciter I'ingénieur est main-
tenant de réchauffer un réservoir de chaleur par fourniture d’un travail abondant,
donc bon marché. Pour faire marcher la machine il faut également faire intervenir
un deuxieme réservoir de chaleur.

3. — La machine périodique en contact avec deux réservoirs de chaleur

Principe de Clausius

On désignera les réservoirs de chaleur par ™) et X2, 11 est nécessaire de préciser
davantage quels sont les buts économiques que peut se proposer 'ingénieur, d’un coté
comme de 'autre, par ’emploi d’'une machine.

Une machine périodique est un dispositif pour convertir I'un dans ’autre travail
et chaleur. Ce qui differe, d'un c6té a ’autre, est le sens de la transformation. Mais
de chaque coté, il est possible d’employer la machine dans deux buts économiques
différents, ce qui nous ameéne a distinguer une machine thermique (d’un usage consa-
cré) et machine calorique (néologisme un peu faible, mais nous n’avons pas trouvé
mieux!). Il sera plus commode de raisonner séparément pour chaque coté.

a) Coté froid, T > 0 :

C’est I’économie que nous connaissons. De ce coté, il est toujours facile de trans-
former du travail en chaleur (par exemple, par simple frottement). Ce qui est rare,
c’est le travail et c’est a lui que s’identifie la richesse. L’ingénieur fait face a deux
entreprises difficiles :

i) Convertir de la chaleur en travail récupérable. Pour cela il emploiera une machine
thermique.

G3)Un « perpetuum mobile » de premiére espece serait une machine contredisant le premier
principe : H ne serait plus une fonction d’état !
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ii) Refroidir un systéme froid, c’est-a-dire essayer d’atteindre les basses température
T — 40 (ce qui correspond a 7 — —00). Pour cela il utilise une machine calo-
rique. Bien entendu, du méme coup, il peut la faire fonctionner comme pompe a
chaleur, ¢’est-a-dire comme moyen de chauffer un systéme chaud, vu I’excellence
du rendement. Il n’empéche que la difficulté réside dans 'emploi frigorifique de
la, machine calorique, non dans son emploi calorifique (on notera soigneusement
la distinction que nous pratiquons entre calorique, qui se rapporte a la machine,
et calorifique, qui désigne un des sens dans lequel on peut la faire fonctionner).

b) C6té chaud, T <0 :

Dans cette économie paradoxale, le travail est abondant. Il est toujours facile
d’en obtenir par transformation de chaleur. Par conséquent, le signe de la richesse,
c’est la possession de calories! On cherche a se débarasser de travail pour en obtenir.
Les deux taches difficiles de I'ingénieur sont donc :

i) Convertir du travail en chaleur a 'aide d'une machine thermique.

ii) Réchauffer un corps chaud, c’est-a-dire essayer d’atteindre les hautes tempé-
ratures T — —0 (ce qui correspond a 7 — +00) par usage d'une machine
calorique. La aussi, il peut faire fonctionner cette machine comme pompe a froid,
c’est-a-dire pour refroidir un systeéme froid. Mais I’emploi difficile de la machine
calorique se trouve étre le calorifique, non le frigorifique.

3A. — La machine thermique

a) Coté froid, T > 0 :

L’ingénieur veut obtenir un travail positif de la machine, soit —A > 0, par
fourniture de chaleur de I'un des deux réservoirs, Q™ ou Q® > 0. Le choix du
réservoir qui correspond & X9 du paragraphe 2 est arbitraire. En fait, I'expérience
a indiqué avant le physicien que la chaleur est fournie par la source chaude, et la
convention s’est bien établie, dans ce c6té, de noter deux températures différentes
par TW < T?) Aussi I'ingénieur mesurera-t-il le succes de la transformation par le
rendement 1 (terme du vocabulaire économique!) :

-A

1= oo (1.12.9)

Le réservoir auziliaire est donc ¥, & température inférieure a celle de 3. I est
placé de facon a permettre une opération facile : réchauffer un corps froid!

Pour le calcul, nous disposons du systeme de relations suivant :

i) Convention sur les températures :

0<TW <73, (1.12.10)
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ii) Premier principe et exigence d’un travail produit positif :
~A=Q% +Q® > 0. (1.12.11)
iii) Deuxiéme principe (inégalité fondamentale) :
QW/TW + Q¥ /T® <0, (1.12.12)

(1.12.11) nous permet d’éliminer Q) de I'inégalité fondamentale, qu’on multiplie
en outre par 7™M > 0 sans en changer le sens. On obtient alors

0<-A<LQY1-TW/T?®) (1.12.13)

expression qui nous livre deux résultats :

—d’abord :
Q? >0, (1.12.14)

la chaleur est fournie par la source chaude et par conséquent, le bilan (1.12.11)
donne 0 < —QW < Q¥ : la source chaude fournit plus de chaleur que n'en recoit
la source froide;

— ensuite : le rendement n de la machine vaut

<n=5@ <1-TH/T® =7<1. (1.12.16)
Le rendement est mazximal, 7, si la machine décrit un cycle réversible. Dans ce
cas, en effet, on a I'égalité dans (1.12.12) et (1.12.13). Il est d’autant meilleur
que la différence des températures est plus grande.

La valeur 7 = 1 ne peut étre atteinte que si, ou bien T® = 400 (soit 7@ = ),
ou bien TW = 40 (soit 71 = —o0). Cette derniére limite est physiquement
inaccessible (cf. troisiéme principe).

b) C6té chaud, T <0 :

L’ingénieur cherche a détruire du travail, soit A > 0, tout en récupérant de la
chaleur. Par cohérence, nous désignerons par X(?) le réservoir auquel est fournie la
chaleur —Q® > 0. Le rendement qui mesure le succes de 'opération se définira par

travail détruit A

O=<n= = <1. 1.12.17
= chaleur produite —Q® — ( )

Le rapport se fait bien dans cet ordre. L’ingénieur emploie ici une machine thermique,
dans laquelle le travail est valorisé par rapport a la chaleur : dans ce type de machine,
ce qui importe, c¢’est d’abord de produire ou de détruire du travail.

Nous pouvons nous attendre a ce que l'expression du rendement maximal 7
contienne aussi le rapport (—7™M)/(—=T®), puisque nous sommes amenés & conduire
le méme calcul que précédemment : éliminer QM) par le premier principe et récrire
I'inégalité fondamentale. Mais pour que ce rapport continue de ne pas dépasser 1, il
faut renverser 1'ordre (1) et (2) et poser T < T,



Principes et systémes discrets 53

Ainsi le réservoir auziliaire ©(V est pris ici & une température supérieure i celle de
() Mais il est encore placé de maniére & permettre une opération facile : refroidir
un corps chaud! Souvenons-nous, en effet, que dans toute ’échelle des températures
7, la chaleur va toujours « naturellement » d’un corps chaud a un corps froid.

Notre systeme de relations s’écrit donc :

i) T® « 7MW <0, (1.12.18)
ii) A=-0W 0@ >, (1.12.19)
iii) Q(l)/T(l) 4 Q(2)/T(2) <0. (1.12.12)

Comme déja dit, le calcul est le méme que précédemment, a cela pres que la
multiplication par 7™ renverse maintenant le signe de I'inégalité :

0<A<L—QI1—(=TYV)/(-T?®)), (1.12.20)

expression dont nous tirons deux résultats :

—d’abord :
-Q® >0, (1.12.21)

la chaleur est fournie au réservoir froid et par conséquent, compte tenu de
(1.12.19) :

la « source » chaude fournit moins de chaleur que n’en regoit la « source » froide;

— ensuite : le rendement n de la machine vaut :
0<n=—"2=<1-(-TV)/(-T®)=75<1; (1.12.22)

il est mazimal, 7, si la machine décrit un cycle réversible (dans ce cas, I'inégalité
fait place a 1'égalité) ; il est d’autant meilleur que la différence des températures
est plus grande.

La valeur 7 = 1 est atteinte si, ou bien 7® = —co (soit 7®? = 0), ou bien
TH = —0 (soit 7V = +00). Cette derniére limite est physiquement inaccessible
pour la méme raison que dans le cas a).

Pour résumer, si nous comparons la fagon dont une machine thermique est uti-
lisée dans chacun des c6tés, nous constatons que (cf. figure 1.12.1) :

i) C’est toujours la source chaude qui fournit de la chaleur et la source froide
qui en recueille. Ce mouvement de la chaleur du réservoir chaud au réservoir
froid est caractéristique de la machine thermique (dans la machine calorique, ce
mouvement est en effet de sens contraire).
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ii) Le rendement est le méme, a condition de renverser 'ordre (1), (2) d'un cas a
lautre.

3B. — La machine calorique

Comme déja dit en fin de la sous-section consacrée a la machine thermique, I'in-
génieur utilise une machine calorique qui « consomme » du travail (cette « consom-
mation » étant a interpréter dans chaque c6té) pour effectuer I'opération difficile que

représente, dans tous les cas, le transfert de chaleur d’un corps froid vers un corps
chaud.

a) Coté froid, T > 0 :
L’intérét de I'ingénieur est la production de basses températures (refroidir le

réservoir froid). La convention sur I'ordre des températures restant toujours 7 <
T® | le rendement de Iopération frigorifique est défini par

chaleur retirée a 1M _ QW

0< = — .
1 travail fourni a la machine A

(1.12.23)

A priori, aucune limite supérieure ne peut étre fixée, puisque Q) et A sont tous
deux fournis & la machine | Le réservoir auziliaire est maintenant ¥, & température
supérieure & celle de M),

Les relations (1.12.10) et (1.12.12) tiennent toujours, mais (1.12.11) doit étre
remplacée par
QW = —A—Q® >0, (1.12.24)

Dans le calcul, nous éliminons cette fois-ci Q) et multiplions par (1/7M —1/7®)~1 >
0. II vient :
0<Q® < A.TO/T® _TO), (1.12.25)

expression dont nous tirons deux résultats :

—d’abord :
A >0, (1.12.26)

il faut fournir du travail d la machine. Le bilan (1.12.24) donne 0 < QW <
—QW. Le réservoir chaud recoit plus de chaleur qu’il n’en est retiré au réservoir

froid;

—ensuite : le rendement ng de la machine calorique employée frigorifiquement

vaut : )
0< np = _QA < TO/(T® — TW) = i < +00; (1.12.27)

le rendement est maximal, mazimum noté Ng, si le cycle est parcouru réversi-
blement.

1l est d’autant meilleur que les températures sont plus voisines, et n’est pas borné
supérieurement (ce qui peut rendre avantageux I'emploi du dispositif comme
pompe a chaleur).
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b) Coté chaud, T <0 :

L’intérét est de produire de hautes températures (chauffer le réservoir chaud). La
relation d’ordre des températures doit s’inverser, comme pour la machine thermique :
T® < TW silon veut conserver au rapport 7 /(T3 — TMW) une valeur positive.

Cette fois encore, le réservoir auziliaire est ©®, mais & une température infé-
rieure & celle de (M.

On cherche & fournir une chaleur — Q™ > 0 & £ au prix d’un travail récupéré

-A>0.

Le rendement de l'opération calorifique sera ainsi défini par

chaleur fournie a4 X _ —QW (1.12.28)

0<nr= . . : :
travail produit par la machine —-A

Aucune limite supérieure ne peut étre imposée a priori a ce rendement, puisque
—QW et —A sont tous deux retirés a la machine!

Les relations (1.12.18) et (1.12.12) sont conservées. (1.12.19) est a remplacer par
—QW =A+Q@ > 0. (1.12.29)

Par élimination de Q@ et multiplication par (1/TM" — 1/T®) < 0 qui inverse
I'inégalité, il vient :

0<-QW < (—A)-TW/(T® — TW), (1.12.30)

De cette expression, nous tirons encore deux résultats :

—d’abord :
-A >0, (1.12.31)

la machine fournit du travail. Le bilan (1.12.29) donne 0 < —QM < Q@ : le
réservoir chaud recoit moins de chaleur que n’en fournit le réservoir froid;

— ensuite : le rendement 7o de la machine calorique employée calorifiquement vaut :

0<nc= #j) < (=T /((=T®) = (=TM)) = fic < +oo;  (1.12.32)

le rendement est mazimal, fc, pour un cycle réversible. Il est d’autant meilleur

que les températures sont plus voisines (utilisation possible comme pompe d
froid).

Pour résumer, la figure 1.12.1 nous montre que :

i) La chaleur va toujours du réservoir froid au réservoir chaud : ¢’est une caracté-
ristique de la machine calorique.

ii) Le rendement est le méme pourvu qu’on renverse 'ordre (1), (2) d'un cas a
I’autre.
Cette caractéristique a permis a Clausius (1822-1888) d’énoncer le principe sui-
vant :
1l est impossible de faire passer de la chaleur d’un réservoir froid a un réservoir
chaud au moyen d’une machine périodique sans intervention de travail.
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machine thermique machine calorique
A QP — QD <—Q® :
8) coté froid &\E Q@
T<0 0T m|T Ao o)
QW < Q@ 7 = om LI
QW < —Q® ~A — —QW
b) coté chaud o A L] A
>0 A 5 D) T Q2 @ T
T T
= _o® QM < Q@

Fig. 1.12.1 Machine fonctionnant avec deux réservoirs de chaleur.

Le sens de parcours indiqué dans la machine (figure 1.12.1) a été
arbitrairement fixé conformément au symbole de la machine périodique
Y = O dans le schéma thermique a). Remarquons les éléments de symétrie.
Toutes les quantités sont écrites de fagon a apparaitre positives. Le but
écomomique est indiqué par alignement horizontal. La fleche verticale
indique le sens croissant de 7.

Ce qui est remarquable c’est que, contrairement au principe de Kelvin-Thomson
qui demande deux énoncés différents, le principe de Clausius est valable sur toute
I’échelle des températures

En effet, si nous passons aux températures naturelles 7 = —7~! et convenons de
prendre 7™ < 73 il est facile de réécrire les inégalités (1.12.25) et (1.12.30) sous
une forme unique quand nous posons A = —A = 0 dans (1.12.24) et (1.12.29) :

QW (r® — 7y <o (1.12.33)

On a forcément QM) < 0, ¢’est-a-dire la chaleur ne peut que venir au réservoir froid
O

Le principe de Clausius est valable méme si les réservoirs sont a des températures
de signes opposés. C’est un cas que nous n’avons pas envisagé jusqu’ici mais qui
mérite examen.

Les deux réservoirs sont a des températures de signes opposés

Dans un mode pareil, il est impossible de définir une économie, donc des taches a
assigner a un ingénieur. La richesse n’y est en effet identifiable a rien. L’équilibre des
systémes n’y est pas réalisable, puisque ’énergie, pour une entropie donnée, n’a ni
minimum ni maximum. La masse étant pourvue du méme signe que la température
absolue, son signe n’est pas défini. Aussi seuls des systémes ou [’énergie cinétique
ne contribue pas peuvent réaliser toute [’échelle des températures 7. Le seul exemple
actuellement connu est celui d'une assemblée d’atomes dans laquelle les échanges
dus a I’énergie magnétique des spins nucléaires et ceux dus a I'énergie cinétique des
atomes (vibrations du cristal) peuvent étre négligés. Dans cette approximation, on a

(GYN. F. Ramsey, Phys. Rev., 103, p. 20 (1956).
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alors décomposition en un systéme (P capable de parcourir toute I’échelle 7, et
en un systeme X(#°™es) qui ne peut réaliser qu'un seul c6té de 7, le c6té dépendant
du choix qu’on a fait pour le signe de la masse

4. — La machine de Carnot . = O

La machine opére sur un cycle de Carnot, réversible puisque formé de deux
isentropes S = S' et S = S" avec S' < S, et de deux isothermes T = T et
T =T®, dont la relation d’ordre dépend du c6té envisagé.

Les quantités de chaleur y sont donc exactement et plus facilement calculables :

{Q(l) _ :i:T(l)(S“ _ S/)7

1.12.34
Q(Q) _ :FT(2)(S” _ S/)7 ( )

le signe dépendant du sens de parcours de l'isotherme.

+00,T'
TRC/EEE EEEE =
O
T(l)——f————‘ -
ool | |
0— ! 1 S
) -4
O
JEC/EEE EEEE =
— 00

Fig. 1.12.2 Cycle de Carnot, formé de deux isentropes et de deux
isothermes dans le diagramme {T',S}. Le sens de parcours indiqué est celui
de la machine thermique. L’axe S est un axe de symétrie.

Le premier principe permet par conséquent 1'évaluation du travail A, ce qui
conduit immédiatement aux formes précédemment données pour les rendements
maximaux 7 (cf. figure 1.12.2). De chaque c6té, la machine thermique et la machine
calorique peuvent parcourir un méme cycle, seuls les sens de parcours étant opposés.
Le travail est donné par la surface du parallélogramme de cotés AS et AT

(35)Cf. I’expérience de Pound et Purcell pour un cristal de LiF. Le temps de relaxation spin-orbite
est de l'ordre de 107° sec et celui de relaxation spin-cristal plus de 10? sec. La condition
d’équilibre pour le ©(7) est donc largement réalisée, cf. Pound and Purcell, Phys. Rev., 81,
279 (1951).






CHAPITRE 2

Systemes continus

Présentation

Dans ce chapitre, nous passons a l’étude du systeme X se présentant comme un
continu limité dans ’espace physique par une enceinte. Les grandeurs extensives de
¥, sont données comme fonctionnelles (intégrales de volume) des densités correspon-
dantes, pour lesquelles sont établies des équations de continuité (section 1). Nous
introduisons alors les changements de référentiels par la transformation de Galilée
(nous ne traitons donc pas du cas relativiste) et considérons comment la covariance
d’une densité par rapport a ce groupe de transformations {G} peut influer sur son
équation de continuité (section 2). En section 3, nous entreprenons ’étude des prin-
cipes dans le méme ordre qu’au premier chapitre : d’abord le principe d’évolution 2a)
qui donne lieu & I'inégalité fondamentale 0.5 > 6Q/T®). Puis en section 4, le premier
principe est considéré non seulement sous la forme de la conservation de (&énergie
H | mais encore sous celle de la conservation de la quantité de mouvement II et du
moment cinétique M. A la section 5, on obtient une nouvelle loi de conservation
pour la masse inerte M, par la covariance par rapport a {G} de cette grandeur
introduite par 'axiome de Newton. Enfin, a la section 6, nous abordons le prin-
cipe d’équilibre 2b) que nous développerons dans les quatre chapitres a venir, sous
sa forme cinétique et sa forme statique, pour un systeme fluide a une ou plusieurs
composantes chimiques. Ici, par un calcul de variation des fonctionnelles, nous éta-
blissons I’équivalence, pour la recherche d’'un maximum lié par contrainte(s), entre
la méthode d’élimination et celle des multiplicateurs de Lagrange.

2.1 Equations de continuité

1. — Nous parlons de systéme continu dans la mesure ou le nombre des éléments
de ce systeme devient non dénombrable. C’est certainement le cas d’un systéeme
distribué dans I'espace physique & d dimensions RY, et dont I’extension est limitée
par une enceinte d’équation C(y) = 0. Pour simplifier, cette enceinte sera prise
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homéomorphe'"’ & la sphére S4~!. Un point courant de sa surface est désigné par i,
tandis que Z note un point du volume V' qu’elle enferme (cf. figure 2.1.1).

d

&y
8

1
Fig. 2.1.1 Systeme continu enfermé dans une enceinte C'(y) = 0.

A chaque ¥ € V est maintenant attaché un élément de systéme d¥%(¥). Ce
n’est pas un systéme élémentaire, au sens ou ’entend la mécanique statistique. Au
contraire, il contient un assez grand nombre de ces systémes élémentaires pour ne
pas étre sensible aux fluctuations. Mais il est assez petit pour étre considéré comme
un élément différentiel. Ce que nous indiquerons par la notation symbolique :

systeme discret ¥ = ZEA — X = / dX (%) systéme continu. (2.1.1)
A eV

dX(Z) est un élément de systeme dans la mesure ou il satisfait au méme postulat
quant & son état que ne le faisait 4 : [’état admet une seule variable non géomé-
trique, 'entropie de dX(Z), qui est une fonction de ¥ comme le sont d’ailleurs les
variables géométriques :

£ = €27 = £2(7)

systeme discret .
Y { SA = % = 5(7T).

} systéme continu. (2.1.2)

s(Z) est ainsi la densité d’entropie au point ¥, et I'entropie S de 3, comme grandeur
extensive, est donnée par 'intégrale de volume a d dimensions :

S = /V (dVs) (%) = /V d*S(z), (2.1.3)

ot d%S(7F) représente 1'élément & d dimensions du champ scalaire entropie.

Cette facon de représenter une grandeur extensive est générale. Nous définirons
I’élément a d dimensions d’un champ tensoriel quelconque = par la relation

def

P (7) S (@ fl, ) @) = @V 175, (21.4)

MUn homéomorphisme est un application bijective et bicontinue.

)Le lecteur, dont les connnaissance en calcul tensoriel seraient hésitantes, trouvera dans 'an-
nexe A tous les éléments nécessaires a la compréhension du texte. Pour ici, voir surtout la
section section A.6.
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La premiére égalité se rapporte a [’espace affine, d%x = |dztdz? . .. dx?| est la mesure
positive de la capacité de volume au point Z, ¢’est- a-dire R? est muni d’une orienta-
tion. f@gl)k_“(f) désigne la densité tensorielle de poids +1 (de la grandeur extensive

F". ) au méme point . La seconde se rapporte a l’espace métrique” et méme
déja simplement a l’espace volumétrique. dV () est [’élément de volume au point 7 :
c’est un vrai scalaire. f*_(Z) désigne le tenseur densité de la grandeur extensive
Fi.  attaché au méme point Z.

La sommation de ces éléments de champ tensoriel constitue un tenseur multilo-
cal, qui correspond bien a une grandeur extensive :

grandeur extensive :

Fioy = ZFZA’“ — i, = /Vdszk(f) _ /V(de’k)(f) (2.1.5)

Ainsi une grandeur extensive est-elle donnée par une fonctionnelle de type densité,
quelle que soit sa nature tensorielle

Dans le cas discret, ces grandeurs extensives sont aussi des fonctions d’état
F[S,¢&]. Dans le cas continu, on a affaire a des fonctionnelles des fonctions d’état
locales F[s(Z, & (Z)], ¢’est-a-dire que les densités f (&) sont elles-mémes des fonctions
de I'état local f[s(Z), & (Z)], et méme plus généralement encore, f[s(Z), & (7), 2] ; cela
conduit a parler de fonctionnelles d’état :

fonctionnelle d’état :

~ i o . (2.1.6)
F=Fls).60) = [ v@ss@.6@.31= | @@,
2. — Considérons maintenant 1’évolution du systéme continu. Deux points de vue

sont admissibles. Avec Lagrange, on peut considérer que l’enceinte, désormais mo-
bile, d’équation C'(¢/,t) = 0 enfermant un volume V (), délimite [’ensemble des points
matériels, donc remarquables, du systeme. L’évolution du systéme est donc détermi-
née une fois connue I’évolution de ’ensemble des points matériels qui le constituent.
Ce point de vue est particulierement bien adapté a ’étude du solide continu : nous
en ferons usage au chapitre 7.

Mais nous allons consacrer ’essentiel de notre étude au systeme fluide, pour
lequel le point de vue d’Euler convient mieux. Le systéme y est décrit par la donnée
d’un certain nombre de champs physiques, c’est-a-dire de fonctions de R? définies
dans tout ’espace physique. L’enceinte délimite donc des points de [’espace, non des
points matériels. L’évolution du systéme est alors déterminée une fois connue celle

®)Voir les sections A.2 et A.7 pour les différents types d’espaces.
() Désormais nous raisonnerons avec F scalaire. Suivant le cas, il suffira d’ajouter les indices
convenables.
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des champs physiques et celle de 'enceinte. La relation (2.1.6) est ainsi remplacée

par
F(t) = F[s(,1),&(,1), V()]

2.2.7
= / dV () f[s(Z,1), £ (Z,1),7,¢] = / av(z)f(Z,t). 227
V(t) V(t)
Quant & l’enceinte, on suppose qu’elle reste homéomorphe a la sphére S%!, par
conséquent on passe de C(y,t) = 0 a C(y’,t + 6t) = 0 par difféomorphisme ™ (voir
figure 2.1.2)
Cly,t)=0— C(y',t+0t) =0
(2.1.8)
y—y =y+ 0y, 1),
ou 67(y,t) = {0r'(¢,t)} est le vecteur contravariant du déplacement « infinitésimal »
du point § € C(y,t) = 0 vers le point correspondant y’ € C(y’,t + 6t) = 0.

d
Ce=0V C(F,t+5t) =0

(Y, 1)

<y

<Y

1
Fig. 2.1.2 Déplacement de ’enceinte de l'instant ¢ & I'instant ¢ + §t.

Nous sommes ainsi amenés & introduire la vitesse (9, t) = {v'(y,t)} d’un point §
de I’enceinte a l’instant t ; ¢’est un vecteur contravariant par sa relation de définition

def

(g, t) = (sltm% o7y, t)/ot. (2.1.9)
3. — La variation 0F(t) de la grandeur extensive F(t) va nous conduire a des

équations de continuité pour cette grandeur. Pour I'instant, nous nous contenterons
de noter le champ densité simplement par f(Z,t).

Cette variation comporte deux parties :

SF(t) = /V ) AV (2)5f(Z,t) + 7{ (f6dV)(i, ). (2.1.10)

C(yt)=0

La premiere provient de la variation du champ de la densité  f(Z,t); la seconde

est due a la variation de volume de I'enceinte 6dV (¢, t) = (do;6r")(y,t), o dF(y)
{do; ()} est le vecteur covariant élément de surface'” : elle représente la convection :

) Difféomorphisme : homéomorphisme bidifférentiable (ici, au moins de classe C?).
) Voir annexe A, section 6.
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des points porteurs de la densité f(y,t) entrent et sortent de la surface C(¢,t) =0
a I’époque t.

Faisant appel au vocabulaire latin de Newton, nous introduisons a ce point la
fluxion de la grandeur extensive F', définie par

Sy der AE() L OF (1)

F(t) T b —e (2.1.11)
et la fluxion locale de la densité f, définie par
Lo def OF (1) . 0f(T00)
O f(Z,t) = ek (ISI_I% TR (2.1.12)
Ces fluxions, au moyen de 'expression (2.1.10), sont reliées entre elles par
PO = [ av@as@n+§ @) (2.1.13)
V(t) C(y,t)=0

Cette relation est déduite uniquement par des considérations mathématiques (va-
riation d’une fonctionnelle). Mais la physique nous permet de décrire la cause de
cette fluxion. Celle-ci comporte également deux parties. La premiere est un afflux
de l'extérieur a travers 'enceinte d’un courant conductif ou courant de diffusion
de la grandeur F, de densité superficielle 77(¢,t) = {j%(¥,t)}; la convention est
de prendre le sens positif de ce vecteur contravariant vers 'extérieur de ’enceinte,
c’est-a~dire émanent du cdté positif de ’élément de surface do'(y,t)'"’. La seconde
représente un changement intérieur de I'enceinte, dii a la présence d’une source de
F, de densité pp(Z,t).

De la sorte, nous obtenons une nouvelle expression pour la fluxion de F':

Fy=-¢ DI ¢ / V() (2.114)

L’identification des deux expressions de la fluxion conduit alors a [’équation de conti-
nuité inhomogéne pour F. On I'établit pour les intégrands, en tenant compte des
propriétés suivantes.

L’enceinte, se trouvant choisie arbitrairement, n’intervient pas dans 1’établisse-
ment de cette équation. On ramene toutes les intégrales a des intégrales de volume
par utilisation du théoréme de Gauss ™. Cela implique que les grandeurs Jp(Z,t) et
0(Z,t), jusqu’ici définies sur I'enceinte, doivent étre maintenant considérées comme
des densités f(7,t) et pp(Z,t). Cette condition est facilement réalisable, car il est
toujours possible par déformation homéomorphique, de ramener ’enceinte sur n’im-
porte quel point de I'espace.

(MDans le cas ou F est un tenseur F k-, . le premier indice contravariant doit étre celui du
courant jpr.., = {§%p Y
®)Voir annexe A, section 7
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La premiere forme de l’équation de continuité inhomogene pour F' est donc
(Ouf + 00V f + §EN (&, 1) = pr(Z,1), (2.1.15)

ou le premier membre comprend la fluzion locale de f(Z,t) et la divergence de la
densité de courant total de F'; le premier terme en est la partie convective, et le
second la partie conductive (ou encore de diffusion de F').

Du fait que nous disposons maintenant du champ de vitesse U(Z, ), nous sommes
a méme de donner une deuxiéme forme a l'équation de continuité (2.1.15). Nous
pouvons en effet définir des trajectoires, ou orbites, ou lignes de courant, solutions
des équations différentielles

(1) = dz;f) _ i(Z(t), 1)

(2.1.16)
avec T = Z(t), z'=2'(t).

Pour l'instant, la grandeur qui circule sur ces trajectoires est encore indéterminée.

Mais par rapport a ces lignes de courant, on peut définir une nouvelle fluxion de
la densité f(Z,t) : la fluzion substantielle ou fluzion hydrodynamique, notée f(Z,t),
et définie par la relation

f(@,1) déf% E0).0| = Ouf + ") 1), (2.1.17)

2(t)=7

la deuxiéme expression signifiant qu’on substitue d’abord Z(¢) & & pour le calcul puis
qu’on revient a & une fois le calcul fait. Soulignons la différence entre fluxion locale
9, f(Z,t) et fluxion substantielle f(Z,¢). La fluxion locale donne le taux de variation
de f(Z,t) dans le temps en un point donné . La fluxion substantielle exprime la
variation de f(,t) dans le temps quand on passe du point & = Z(t) au point voisin
¥ = Z(t +dt) en suivant la trajectoire U(Z,t)dt, c’est-a-dire en suivant une ligne de
courant (convectif). Elle comprend la fluxion locale pour premier terme.

Avec la fluxion substantielle, I’équation de continuité inhomogéne pour F' s’écrit
sous sa deuxiéme forme (on dérive le produit d,(v'f)) :
(f + fO" + 0uji) (T,1) = pp(Z,1). (2.1.18)
En absence de source, on a affaire a [’équation de continuité homogéne pour F :
(f + fOr" + Ouj) (&, 1) = 0. (2.1.19)

En absence de source et d’affluz, on a affaire a [’équation de continuité convective et
homogene : .
(f + fo)(z,t) = 0. (2.1.20)

Dans un tel cas, en se reportant a 'expression de la cause de la fluxion (2.1.14), on
voit que cette derniere est nulle :

F(t) =0, soit F(t) = F". (2.1.21)
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On parle alors de la conservation forte de F. F' est un tenseur constant associé a
I’enceinte, quel que soit le mouvement de celle-la. De plus, une partie de I'indétermi-
nation de la grandeur qui circule sur les orbites (2.1.16) est levée. La vitesse U(Z,t)
est celle d’un élément de grandeur fortement conservée df (Z,t) (Uf est le courant de
convection de F') suivant une orbite (2.1.16).

Nous leverons compléetement l'indétermination en anticipant sur un résultat
donné a la section 2.5. De toutes les grandeurs conservées, seule la masse inerte,
de densité m(Z,t), lest fortement, grace a sa covariance par rapport au groupe de
Galilée (voir section suivante). Ainsi ¥(Z,t) est la vitesse d’un « point de masse »
dm(Z,t), ce qui justifie appellation de fluxion substantielle pour f(f, t) = (Of +
V'O, f) (T, t) ou cette vitesse intervient.

2.2 Covariance de Galilée

Nous désignons par transformation de Galilée la transformation affine de I’espace-
temps suivante (changement galiléen de référentiels) :

{2t} = G{Z,t}
'T = G(Z,t) avec T = =" — vit (2.2.1)
t=G(t), avec 't =t + to,
ol v} et ty sont d + 1 constantes. Physiquement, le référentiel {7, "t} se déplace par
rapport au référentiel {¥, ¢}, avec une vitesse constante vy = {v}. L’ensemble de ces
transformations constitue un groupe affine, le groupe de Galilée {G}, par rapport

auquel nous pouvons définir des champs de tenseurs de toute nature et de tout ordre
(il suffit de substituer G & A dans toute 'annexe A).

Plus que la transformation elle-méme, c’est la notion de covariance d'un champ
par rapport au groupe de ces transformations qui va retenir notre attention.

Nous appelons champ tensoriel covariant par rapport au groupe de Galilée {G},
un champ tensoriel f* (¥, t) par rapport a {G}, qui vérifie la relation suivante,

dite de covariance de f. (Z.t) par rapport a {G} :
Foo (2 = forn (2,1). (2.2.2)

On remarquera a nouveau l'invariance des indices

9 On remarquera linvariance des indices. On obtiendra une transformation affine G plus géné-
rale en faisant le produit de G par un groupe affine {A} quelconque :

Goagl =A@ A =)
B t=t+t.

(19 Nous raisonnons ici avec un champ scalaire. Comme d’habitude, dans tout autre cas, il suffit
d’ajouter les indices appropriés.
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1. — Son gradient 0;f(Z,t) est aussi covariant par rapport a {G}.

Of (1) = 0, (T, 1). (2.2.3)

En effet, on prend le gradient en maintenant ¢ et * constants, c’est-a-dire qu’on
réduit le groupe {G} au groupe affine ¥ = A7, avec A% = 5}'.

2. — Enrevanche, sa fluzion locale 0, f (Z,t) n’est pas covariante par rapport a {G}.

Bien que dt = d't et que ¥ soit indépendant de ¢, 7 et t dépendent tous deux de % :

Onf (,'t) = Onf (£(1), (%)) = O f (T + o, %)

A (2.2.4)
= O f(Z,t) + vi0: f (7, ).
3. — Mais sa flurion substantielle f(f, t), est bien covariante par rapport a {G}!
En effet de (2.2.1), on tire la loi de composition des vitesses
V(%) = v'(&,t) — v (2.2.5)

Par conséquent :

F(7,%) = 0f(T, 1) + v (2, 1)
— 0f(7, 1) + Ui (7, 1) + (v — )OS () (2.26)
= 8tf(fv t) + vlazf(fa t) = f(fa t)'

Le champ vectoriel des vitesses U(Z,t) présente la particularité suivante :

I n’est lui-méme pas covariant par rapport a {G}, vu expression (2.2.4). Mais
puisque la seule différence d’avec la relation de covariance (2.2.2) est la présence des
d constantes vj, les points 1), 2) et 3) qui viennent d’étre établis lui sont applicables!
De ce fait, les expressions 0;v*, div ¥ et v, qui interviennent dans les équations de
continuité, sont covariantes par rapport a {G}.

Appliquons maintenant la relation de covariance a I’équation de continuité d’une
grandeur f(Z,t) qui est elleeméme covariante par rapport a {G'}. On peut 1’écrire
sous la forme :

f+ fdiv ¥ = =% + pp. (2.2.7)
Par ce qu’on vient d’établir, le premier membre est manifestement covariant. Il doit
donc en aller de méme pour le deuxieme membre.

Comme jr et pp représentent des causes indépendantes, nous postulerons sépa-
rément la covariance de l'une et de ['autre

(D7) suffirait de postuler que O j}? est covariante par rapport & {G}, ce qui ajouterait & un Jg
covariant, un jg avec fv doyj% = 0, c’est-a-dire un « circuit fermé ». (En relativité restreinte
et en relativité générale, cet arbitraire disparait.).
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2.3 Deuxiéme principe 2a) : évolution

Pour un systeme ¥ adiabatiquement fermé ¥y, 'entropie répond a la condition

S(t) >0, T =23, (2.3.1)

Comme c’est une grandeur eztensive scalaire
S(t) :/ (dV's)(Z,t), (2.3.2)
FeO(t)

sa densité s(Z,t) satisfait a I’équation de continuité inhomogene (premiere forme) :
(05 + Bu(o*s + J)) (@) = ps(@ 1) = (7 1). (2.3.3)

La densité de source d’entropie pg sera appelée densité d’irréversibilité et notée 1.
C’est un scalaire non négatif. En effet, récrivant (2.3.1) en faisant intervenir la cause,
on obtient

$(t) = — 7{} L A0+ / (dVi)(, ) > 0. (2.3.4)

zeC(g,6)=V (1)

Mais si le systeme est adiabatiquement fermé ¥y, il n’y a pas d’afflux d’entropie et
donc :
(doej§)(7,t) = 0, T = . (2.3.5)

Il en résulte immédiatement que l'intégrand de l'intégrale de volume doit étre non
négatif :
i(Z,t) > 0. (2.3.6)

Ce renseignement concernant 'intérieur de I’enceinte n’est évidemment pas changé
si, maintenant, nous ne supposons plus cette enceinte adiabatiquement fermée.

Supprimant de (2.3.4) un terme non négatif, il vient
502§ (@) 237)
C(§4)=0

Cette inégalité se ramene a la forme habituelle du premier chapitre de la fagon
suivante.

Nous anticiperons un peu sur la suite en posant
¢'(&,1) = T(,1)75(3, 1), (2:3.8)

ou ¢(Z,t) est la densité de courant de chaleur, T(Z,t) la température absolue locale.
Cette relation fait intervenir le premier principe. Multiplions notre inégalité (2.3.7)
par un 6t > 0; compte tenu de (2.3.8), il vient :

5 > 7§ (—WT’@) (7,4)6t = 7§ (CMTQ) (7,1). (2.3.9)
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La derniere égalité ci-dessus tient compte de ce que
dsQ(7,t) = —(doiq") (i, t)ot (2.3.10)

ot d6Q(¥/,t) est P'élément de chaleur fournie & ¥ & travers d'o (i), a la température
T(y,t) du point ¥ au temps t.

Si 'on admet que toute I'enceinte est en contact avec un réservoir de chaleur
YO & température 7@, voir (1.10.1), on arrive & I'inégalité

1 Y 16

ott T (3,t) est la température au point de la surface C(#,t) = 0. La deuxiéme
inégalité n’existe que si 7O () = T = cte, c’est-a-dire pour un réservoir unique
de chaleur.

Si le systéme est adiabatiquement fermé, on a (do;q*)(7,t) = 0. Ceci implique
(do;j%)(¥,t) = 0 également, a la condition que T(y,t) # 0. Alors S(t) > 0. Mais si
T(y,t) = 0, cette implication ne tient plus, d’ou le paradoze d’une fluxion d’entropie
de signe arbitraire pour un systeme adiabatiquement fermé. Ce paradoxe, qui montre
bien que T'(y,t) = 0 est une limite physiquement inaccessible, sera complétement
élucidé par le troisiéme principe (section 4.9).

Un mot encore sur la covariance par rapport a {G} de l'entropie. Sous sa
deuxieéme forme (2.3.3) s’écrit

(5 + sdiv & + div 75) (&, 1) = i(Z,t) > 0. (2.3.12)

L’entropie d’un élément de systeme doit étre covariante par rapport a {G}, puis-
qu’elle est une mesure de son age, celui-ci ne pouvant dépendre du référentiel consi-
déré. (On peut d’ailleurs poser cette covariance comme axiome.) Il s’en suit que
Js (ou tout au moins sa divergence) et ¢ doivent étre covariants par rapport ¢ {G}
(théoreme de Prigogine' *'). Ces propriétés de covariance suivent plus précisément
en thermodynamique relativiste (relativité restreinte et relativité générale).

2.4 Le premier principe

Pour un systeéme fermé ¥ = Y, il est des grandeurs extensives qui se conservent.
1. — L’énergie : H(t) = [(dVh)(T,1).
L’équation de continuité s’écrit

Bih + div (Th + Tu) = pur- (2.4.1)

(2)] Prigogine, Etude thermodynamique des phénomeénes irréversibles, Desoer, Litge (1947).
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Nous décomposons d’abord arbitrairement le courant d’énergie en trois parties
ju=q+a+¢ (2.4.2)

avec

e ¢ densité de courant de chaleur,
e d densité de courant de travail géométrique,

o ¢ densité de courant de travail chimique.

Quant a la source, elle est uniquement due au travail géométrique (a l'intérieur
de C(y,t) = 0) des forces extérieures, de densité volumique k' ; elle est donc
notée p (action da distance). La chaleur et le travail chimique sont essentiellement
apportés de 'extérieur :

PH(fa t) = pA(f7 t) = ot (243)

pQ:pC:()7

ou 07%(7,t) est un déplacement & lintérieur de I'enceinte. Les forces extérieures
peuvent étre par exemple la force de gravitation ou la force électromagnétique. Cette
derniere n’étant covariante que par rapport au groupe de Lorentz, nous prenons les
cas |U(Z,t)| < c ou c est la vitesse de la lumiere dans le vide. En ce cas, les forces

magnétiques disparaissant, ?(:E, t) est covariante par rapport a {G}. Toujours dans
I’éqution précédente, pg = 0 et pc = 0 implique qu’il n'y a pas de source interne de
chaleur ou de substance chimique. Cela n’implique pas que les divergences de ¢ ou
¢ soient nulles également, car, comme nous allons 1’établir

§=Tjs et &= paja ot Ja = (Ta — ¥)na
A

sont de divergence non nulle si div js # 0 (production d’entropie) et div 74 # 0
(production de la substance chimique A).

L’équation sous forme intégrale s’écrit

H(t) = (Pg + P4+ Po)(t)

- (—j{(d?,(j')) + (/ dVpa — %(d?a)) + (— f(d?,g)) (2.4.4)

Pour un systéme fermé ¥ = Yy, défini par une enceinte particuliere Cyo(7,t) = 0,
le premier principe affirme que H est conservée, c’est-a-dire,

A)=0=4 . . _ - - (2.4.5)
(da,(j)(y,t):(da,a)(y,t):(da,E)(y,t)zo.

(13) Comme &% désigne la variable et non la densité de force extérieure, nous passons a la notation
— —
K pour la force, de densité k.
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La condition de nullité des afflux est facilement satisfaite. En effet, dans le cas ou
le corps physique ne remplit pas tout 'espace —oo < 2! < oo, Vi, les fonctions
(7, t), a'(Z,t), '(Z,t) s’annullent aux limites ' — 400 et par conséquent, pour
une enceinte C35 (¥, t) = 0 tendant vers l'infini, les afflux sont nuls.

I reste donc explicitement la condition que p4(Z,t) doit disparaitre en tout
point de ’enceinte, donc de I'espace quand cette derniere s’étend a l'infini. C’est [a
condition d’homogénéité du temps :

pa(Z,t) =0 pour ¥ = ¥gp — 5. (2.4.6)

2. — Les d composantes I1; de la quantité de mouvement : = /(dV?(f, t).
L’équation de continuité de la z-eme composante donne
81571'1' + 8k(Uk7T7; - Tki) = k,(ext)i, (247)

avec les définitions :

—r = j:: . tenseur des tensions
plert) — ~ source due aux forces extérieures (2.4.8)
i = Pmi - agissant A distance (voir remarque apres 2.4.3).

L’équation sous forme intégrale s’écrit

IL(t) = K;(t) = j{ddlKi(ij, t) + /ddKi(f, t) force totale

avec d"'K;(¢,t) = (doy, ") (¢,t) élément de force de surface, (2.4.9)

et UK (Z,t) = (dVE“™)(Z,t) élément de force de volume.

«—
Pour un systéme fermé > = ¥y d’enceinte Coo(7/,t) = 0, il y a conservation de II,
c¢’est-a-dire,

IL;(t) = 0 <> {k“(Z,t) = 0 et (doyr™)(7, 1) = 0. (2.4.10)

Selon le méme raisonnement que pour 1’énergie, I'aflux est nul pour une enceinte
infinie. Il reste la condition d’homogénéité de l’espace :

EC™(E,1) = 0 pour B = Sgg — B (2.4.11)

Les équations de continuité pour H et pour II; sont covariantes pour le groupe
affine 7’ = AZ. A(igsi, dans l’espace affine, on a conservation du scalaire H et du
vecteur covariant I pour ¥ = X7 si les équations (2.4.6) et (2.4.11) sont satisfaites.

On dit aussi que H = 0 et II; = 0 pour 20 expriment 'homogénéité du temps,
respectivement de P'espace affine {z'}. Ces relations entre conservation et homogé-
néité n’apparaissent vraiment que dans le formalisme de la théorie quantique, ou
éventuellement dans le formalisme de la thermodynamique statistique.
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3. — La quantité N4 de la substance A : Na(t) = /(anA)(:E, t).

On désigne par A, B,...,C les différentes substances. L’équation de continuité
correspondante est
Oma + O(v*na + j%) = pa, (2.4.12)

avec p4(T,t) source de la substance A due aux réactions chimiques. Méme pour un
systeme fermé Yo, il n’y a pas en général conservation de cette grandeur, vu que
div ja et pa (réactions chimiques) sont toujours présents.

4. — Les (1/2)d(d — 1) composantes du moment cinétique

Ma(t) = Mis(®) = [ AVI(E )

Le moment cinétique, tenseur antisymétrique, ne peut étre défini qu’aprés l’intro-
duction d’une métrique, puisque

(T, 1) = (i, — zm;) (T,1)  avee z; = gipx”. 2.4.13
i

L’équation de continuité s’écrit

Optir, + O (Vi pir — (2 — aph)) = 2k — g ke, (2.4.14)
ou l'on a défini
a0 = (ot = mr ) E0 G o G eons,
P (3,8) = (k) = k(™) (7, 1) Gsité du moment :
Parfois, par,, (Z,t) sera noté d;x(Z,t). Sous forme intégrale, (2.4.14) sécrit
My (t) = Di(t) = f d Dy (77, t) + / d?Dix(Z, 1), (2.4.16)

avec

moment élémentaire
d D (7, 1) = (yidoe’s — yedoe)(7,t) des forces extérieures
de surface,

d o (ext) (ext) [ o moment élémentaire
d*Di(z,t) = (z;dVk, ~ — 2 dVk;7)(Z,t) des forces extérieures
de volume.

Pour un systeme fermé ¥ = 3, d’enceinte Coy(7/,t) = 0, il y a conservation de
M.

A9 D (dans Dj;), de Vallemand Drehmoment.
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Remarquons d’abord _que I'équation de continuité (2.4.14) contient celle de la
quantité de mouvement II. En effet, compte tenu de la définition (2.4.13) de i,
nous commencons par dériver en laissant les z; constantes. Il vient :

(z:0my, + 2:8p(WPmy, — 74) = 2k D) (7, 8), (2.4.17)

plus une équation identique ou I'on permute les indices ¢ et k. Ce n’est pas autre
chose que (2.4.14(1_1 multiplié par la constante x;. La nullité est ainsi assurée par la
conservation de II.

Reste a dériver les x; en les identifiant aux points des trajectoires 2*(t). Cela
donne (rappel : x; = gyx® = Opw; = gir)

(Vi giemr — giem™% — Vogremi + gret%) (T, 1) = 0, (2.4.18)

soit encore
(v — Tk, — kT + Trs) (2, ) = 0. (2.4.19)

Cela veut dire que le tenseur (v;m, — ) (Z, t) est un tenseur symétrique :
(UZ"/Tk - Tik)(f, t) = (U(ﬂrk — Tzk))(f, t) (2420)

Par les mémes formalismes que ceux signalés précédemment, on montre que la

/. . i = ./ N . .
conservation du moment cinétiqgue M = 0 est liée a 'isotropie de l’espace

2.5 Covariance de Galilée
et conservation forte de la masse inerte

L aziome de Newton introduit le scalaire m(z,t) par rapport ¢ {G} appelé den-
sité de masse inerte :
mi(Z,t) = (mv;)(Z, t). (2.5.1)

Il est a remarquer que cet axiome ne peut étre posé que dans I’espace métrique,
o <— — s 7. P
puisque 7 et ¥ sont des grandeurs contragrédientes dans l’espace affine.

Avec cet axiome le terme v;m, devient symétrique ; ainsi, la relation de symétrie
(2.4.20) entraine la symétrie du tenseur des tensions 7 :

Tik(%, t) = Ty (%, t)  avec axiome de Newton. (2.5.2)
H
Utilisons également ’axiome dans 1’équation de continuité pour II (2.4.7). On trouve

((8tm + Ok (v*m)v; + m(Byv; + v 0k;) — W = k§ewt)) (Z,1), (2.5.3)

(15)L’hom0généité et ’isotropie de I’espace-temps sortent de la théorie einsteinienne de la relati-
vité générale dans le cas ou le tenseur de courbure disparait.
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soit encore, avec 1’accélération substantielle v;,
((Oem + O (v"m))v; + mi; — O = k‘i(m)) (7, 1). (2.5.4)
t

Cette équation, qui sera l’équation de mouvement pour ¥(Z,t), doit étre covariante
par rapport a {G}.

Si I'on postule la covariance de kg‘”“’

ne soit pas covariant, il suit que :

= pr, et de 3 = —jf;i, bien que m; = muv;

1) m, facteur de v; qui est covariant par rapport a {G}, doit Iétre aussi : la masse
inerte est covariante de Galilée.

2) v; n’étant pas covariante par rapport a {G'}, la parenthése qui la multiplie doit
étre identiquement nulle :

Oym + div (Im) = 0. (2.5.5)

C’est I’équation de continuité convective homogene pour la grandeur extensive
M(t) = / dV(Z)m(Z,t) = M' = constante (2.5.6)
V(t)

appelée masse inerte du systeme.
Cela signifie également que, source et afflux étant nuls partout, la masse inerte
est une grandeur qui se conserve fortement

M(t) =0 par covariance de Galilée. (2.5.7)
3) Reprenant (2.5.4), on constate que l’équation de mouvement pour v;

mb; — Ot = k{*Y (2.5.8)

i
est aussi covariante par rapport a {G}.

Cette équation de mouvement sera reprise, avec celle des autres grandeurs in-
troduites, dans le chapitre suivant.

Remarquons, pour terminer, qu’aucune loi de conservation de la masse inerte
ne résulte du premier principe en relativité restreinte et relativité générale. Ce fait
établit que, contrairement a ce qui est abondamment prétendu, le groupe de Galilée
{G} n’est pas le cas limite du groupe de Lorentz {L}.

2.6 Equivalence des méthodes d’élimination
et des multiplicateurs de Lagrange

Pour simplifier le plus possible, nous n’exposerons ici cette équivalence pour la
recherche de maximum lié des fonctionnelles extensives que dans le cas d'une seule
contrainte. Pour plusieurs contraintes, on se reportera a la littérature

(16 Par conséquent ¥(&,t) est la vitesse d’'un « point de masse inerte » dm(Z, t), cf. (2.1.15).
(UDE.C.G. Stueckelberg de Breidenbach et P.B. Scheurer, Helv. Phys. Acta 40, 887 (1967) et J.
Poncet et les précédents, Helv. Phys. Acta 44, 522 (1971).
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L’application du principe d’équilibre au systeme fermé > = >y, requiert en
effet la recherche du maximum de I’ entropie . S en tenant compte des contramtes sur
I’énergie H, sur la quantité de mouvement H sur le moment cinétique M et, grace a
sa covariance par rapport a {G}, sur sa masse inerte M, soient 1+d+(1/2)d (d 1)+1
contraintes. Toutes ces grandeurs, extensives, sont des fonctionnelles d’état.

La méthodes des multiplicateurs de Lagrange revient a considérer la condition
suivante, dont il faut prendre le maximum libre :

Ws(@),€ (@] = (5 + 9H — ¢l ~ Zw Mg — 5M)[5(2), € (@)
(2.6.1)
- [avn@.

ot ¥, ¢*, wl™ et 3 sont des multiplicateurs appropriés, des constantes.

On remarquera que les densités ne dépendent plus explicitement du temps. En
effet, [’équilibre est stationnaire ~'. D’abord la condition d’équilibre sur I’entropie
donnée au premier chapitre (section 1.2), et que nous répétons ici :

Hm S(t) = Spax < 400 (2.6.2)

t—4o00

pour un ¥ fini, doit s’interpréter de la fagon suivante :

/ 4V (Z)s(Z,t — +o0) = / (dV 1) (@): (2.6.3)
V (t—+00) 1%

Pour I'état d’équilibre, la densité d’entropie est stationnaire : c¢’est une distribution
purement spatiale :
Ors(Z,t) = 0, soit s = s(7). (2.6.4)

Il en va de méme des autres champs de densités, puisque les contraintes ont une
valeur constante :

Va: 0%, t) =0, soit & = & (7). (2.6.5)

De méme, 'enceinte ne se déforme plus; le volume qu’elle enferme devient une
constante :

8,V (t) =0, soit V(¢) = V', (2.6.6)

Ce point acquis, nous allons simplifier notre probléme et le réduire au suivant : cher-
cher le mazximum d’une fonctionnelle de type densité F[& (Z)] lié par une contrainte

du méme type G[&(Z)] = G'.

(18)1,a plupart des traités s’occupent seulement de 1’équilibre statique. Pour les solides, il existe
des équilibres non stationnaires. C’est le cas lorsque le moment cinétique constant M/, n’est
pas proportionnel & w®*.

(19 Le volume est une grandeur extensive : V = fV dV (Z). Selon notre notation des contraintes,
nous devrions écrire pour la valeur constante V' = V’. Mais nous réservons la notation V' a
un autre usage.
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Nous allons montrer que pour réaliser cet objectif, il est équivalent de procéder
par élimination d’une variable ou de procéder par la méthode du multiplicateur de
Lagrange.

Toutes les variables d’état locales géométriques ou non seront désignées par le
méme symbole £ :

état local & (%) ={&*(@)} a,f...=1,2,...,w VIZEV. (2.6.7)

Les fonctionnelles de types densité

(2.6.8)

admettent pour densité

f(@) = fl€(2), 7]

9(7) = g[€ (7), 7.
Soit &y(Z) 1'état local d’équilibre. Les variations des variables d’état locales autour
de leur valeur d’équilibre

(2.6.9)

0EX(Z) = £4(%) — &5(2), o, 0,...=1,2,...,w VZeV (2.6.10)
sont prises comme infinitésimales. Nous désignons par (55?‘0) (Z) celles d’entre elles

qui sont compatibles avec la contrainte G = G'.

Par rapport aux variations d§%*(¥), de fagon tout a fait générale, la premiere
variation d’une fonctionnelle est donnée par

(1)
SOFE()] = /V AV (Z) 55;—([%)']55%) (2.6.11)

et la seconde variation par

SR - |

\%

SAF.. ]
06%(Z) 667 ()
oit les fonctions 0N F[...]/66%(%) et P F[...]/66%(Z) d€°(Y) sont les premiere et

—

seconde dérivées fonctionnelles de F/[...] par rapport aux variables £%(%) et £°(%)

av (@) / v (@) 560(7) 65, (26.12)

Mais du fait que F[...] est une fonctionnelle de type densité, ces dérivées fonc-
tionnelles se réduisent seulement aux dérivées partielles de la densité par rapport
aux variables d’état locales :

of(Z)
5(1)F...:/dl/f 2
= VO G
1 0% f ()
5<2>F...=—/dv*—5a*5ﬁ* 2.6.14

5€%(2), (2.6.13)
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soit le terme général :

SOF[.. ] =% /V AV (%) faran..ap(T) 06 (T) 66°2(F) ... 064 (Z),  (2.6.15)

avec la notation

f,Oé1042---O¢k (f) =

O/ (‘? (2.6.16)

081 (Z) 06°2(T) ... 0€*x(T)
De méme pour ¢ a,as...a) (7).

On admet que f(Z), g(¥) et les £¥(Z) ont les propriétés d’analycité nécessaires
pour conserver un sens au calcul !

Alors la variation totale de F[¢(Z)], compatible avec la liaison, définie par

Flg(T)] = Flg(D)] — F&(2)]

= —

>

/V 7) Fronaan (7) 063 (7) €32, (7) ... 0635 ()

k=1 (2.6.17)
=%
=1
ne doit pas étre positive pour que () corresponde a un maximum.
En particulier, on parle d’un extremum et d’un maximum d’ordre k si :
1 2 2k—1 (= 2 (=
By F =GV F = ... =65 VF)[e(@)] =0 et 6\ F[€()] < 0. (2.6.18)

Nous nous contenterons ici du premier ordre!

Désignant par ¢ le multiplicateur de Lagrange (une constante), nous formons
alors la combinaison linéaire

V[ (7)) = Flg (@)] +9G[¢ (D)] = / dv (Z)(f(Z) + Jg(Z)). (2.6.19)
1%
L’équivalence des deux procédés revient ainsi a montrer que :

s i FE@E] Mo [
la contrainte G[¢ (Z)] = G~ (5(%) Fl¢(£)] = 6@ [¢(7)] < 0.

ﬁj
Y
—~
8
i
I
S
G
S
Iy
—
8y
=

~

1. — Stationnarité de F[¢(Z)].

a) Meéthode d’élimination.

De la contrainte G[¢(Z)] = G’ on élimine une des variable d’état locales en
un point donné 7, soit £1(71), en en faisant une fonctionnelle d'un nombre réduit
de variables d’état locales. Il faut se souvenir que £*(Z) représente un nombre non
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dénombrable de variables £%. Ce nombre réduit sera encore représenté par £%(7)
mais & parcourt un volume réduit V' par rapport a V' (ainsi o, 3,... = 1,2,...,w,
nombre inchangé d’indices grecs, mais £ € V/ C V| nombre diminué d’indices 7) ;
c’est-a-dire, nous éliminerons les variables £'* dans un volume Vj, centré en i,
arbitrairement petit, mais fini et contenu dans V. Nous avons

Vv=v+V (2.6.21)
et ainsi ¢! s’exprime comme fonctionnelle sur V’
=€ @), geV. (2.6.22)

On cherche alors le maximum libre de la fonctionnelle F sur V’ (donc avec le nombre
de variables d’état réduit), également de type densité, définie par

Fle@) = FEE@LE@] = | @@, zeV. (2623

Il faut remarquer que la connaissance de £'[...] et de F[..] n’est nullement néces-
saire ; pour le calcul, seul suffit de connaitre la premiere variation de § .. ] et toutes
les variations de F7[...], qui sont liées avec celles de F[...] par la relation suivante :
Vi>1 zeV; sPFE@)] =0 FlE@), FeV. (2.6.24)

Pour obtenir §¢' = §W¢. . .] comme fonctionnelle sur V’, nous adoptons alors la

variation continue particuliere suivante :

dans Vi : 8¢' = constante, §6¢ =0, V'a # 1,
(2.6.25)
dans V' . &% arbitraire, V a.
De ce fait, la variation de la contrainte, qui doit étre nulle, s’écrit :
0=3GIE @) = [ (@i 6@+ [ (@Vgn 56)(@) (2.6.26)
Vi ’

Les densités étant continues, on peut appliquer le théoreme de la moyenne a l'inté-
grale sur V;

/ AV, 36Y)() = Vg 6€", (2.6.27)
Vi

avec g1 = ¢1(@1) et 6&' = 0£1(#1). Les deux derniéres équations nous donnent ¢!
comme fonctionnelle des £*(7), Z € V' :

511 (D)) =~V grt /V (Vg 66°)(F) , TV (2.6.28)

C0En toute rigueur, on a :

/ @V (@) =Vif(@&), & e Vi et / (dV9)(@) = Vig(@), & € Vi.
i Vi

Pour V; arbitrairement petit mais fini, f{ et f‘l’ tendent vers la méme limite 7 € V7.
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et ses dérivées fonctionnelles du premier ordre

0€[¢ ()] 11 (s
—— — == - 2.6.29
550[(3—:3) 1 919, (x) ( )
que nous aurons a utiliser pour la deuxiéme variation de F[...].

Quant a la premiére variation de F|...], elle s’écrit

5§3>F [€(D)] =Wif1 08" + / (dV fo) 66%(T), Te V'

/

— [ V@ (fel@ + (- @)@ (2630)

- / (AV f0 664)(@) = 6V F[g (@) 0.

Les 0£%(¥) étant arbitrairement variés sur V', on obtient w équations pour V & € V' :

doit

Va: fol@) = fol@) + 9(&)g(@) =0, £V, (2.6.31)

ol nous avons posé
&) = =91 ' fr, (2.6.32)
qui est une fonction d’état intensive en I.

b) Méthode du multiplicateur de Lagrange.

La stationnarité de (2.6.19) conduit a

SOY[E (7)] = / (V) 66%)(F)

\%

(2.6.33)
_ / V(@) (fa(@) + 99.4(2))56%(@) L0, Fe V.
1%
Pour la partition du volume adoptée :
S ] = Vi(fi +Ig1) 66"
doit (2.6.34)
+ [ V@) (@ + dg0@)5E @ o
Comme toutes les valeurs 6% sont arbitraires, on obtient séparément
fi + 991 =0, (2.6.35)
c’est-a-dire ¥ a bien la valeur (2.6.32) et
Va: (D) = fol@) +9g.) L0, eV’ (2.6.36)

qui est bien la condition (2.6.31).
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Comme il est bien connu, les deux méthodes sont équivalentes pour la condition
de stationnarité.

2. — Mazimum de F|...] lié par G[...] = G'.
a) Condition suffisante.

Nous entendons par 1a qu’il suffit que §@W[...] < 0 pour que I'on ait aussi
S\Fl..] <.

Nous varions encore une fois (2.6.30) :

SV FIE @) =6PF[E (@), sV’

=0 [ dV(Z)(f.a() + 9(T1)g.a(T)) 06%(Z)

V/

(2.6.37)
— [ V@ (Faal@) + 9(31)5.05(2) 66°(2) 56 (2)
+ / AV (@)ga(7) 09(F) 66°(@) <.
La variation de ¥(¥;) ne fait intervenir que §¢* :
§(—gi f1)(&) = —g1 ' (i + 9(Z1)g11 6€". (2.6.38)

Compte tenu de la valeur (2.6.28) de 6¢!, on obtient pour cette deuxiéme variation :
SEVFIE@) = [ (AV10a 362 562)(@) + Vidus (56
V/

— [ (@Vap626°)(@) (2:6.39)
g

ot le signe = signifie que Iégalité n’a lieu que pour la variation particuliére choisie.
Si la seconde variation de W[...] est négative pour une variation arbitraire de (&),
elle 'est a fortiori pour la variation particuliere adoptée, ce qui démontre la condition
suffisante.

b) Condition nécessaire.

Contrairement au cas discret, on va montrer que, dans le continu, il faut égale-
ment que 6 W[...] < 0 quand (5(%))F[. ..] < 0; c’est ce que nous appelons la condition
nécessaire.

Pour cela, nous recourons au méme procédé et choisissons une variation encore
plus particuliére. Alors que jusqu’ici les variations de tous les £*(Z) étaient arbitraires
en V', nous les choisissons de la maniére suivante :
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De V', nous séparons un volume Vg, arbitrairement petit mais fini, centré en
Zo € V', de fagon que
Vi=Vy+ V" (2.6.40)

Nous demandons alors que :

dans Vy @ 0p&%(Z) = Vi lon® = cte®, V a
0 ®§ (Z) o 97 (2.6.41)
dans V" §,,)£%(2) =0, Va.
Nous considérons ces crénaux comme limites de fonctions continues.
Dans ces conditions, 6 a pour valeur, cf. (2.6.28),
0N E (@) = Vi g1 g.a(To) O™ (2.6.42)
Substituant cette valeur dans la deuxieme variation de F[...] en (2.6.41), il vient :
n - = o — - = al?
Sy F L. ] =00 F...] = Vi " .ap(F0) 0™ o0 + Vi 11 [ g.a(&1) 1]
skok 2 — dOit
= 50Ul (@)] < 0,
(2.6.43)

ol le signe = signifie que I’égalité n’a lieu que pour cette variation plus particuliere
(p). Comme Vj et V} sont indépendants, et que &y et &y sont deux points arbitraires
de V, on en conclut que la forme quadratique

{ap(@)} <0, VZeEV (2.6.44)

doit étre nécessairement définie négative.

La condition étant a la fois nécessaire et suffisante, on a bien montré [’équivalence
des deux méthodes pour ['obtention d’un maximum lié¢ par une contrainte.



CHAPITRE 3

Thermocinétique du fluide

a une seule composante chimique

Présentation

L’objet de ce chapitre est de décrire 'équilibre thermocinétique d’un fluide
constitué d’une seule substance. Les conditions d’équilibre fixent le signe des gran-
deurs qui interviennent dans les équations de mouvement du fluide. On voit alors
que les solutions ont un sens pour le futur seulement, ce qui nous permet de rendre
compte du phénomene de la fleche du temps, un de nos principaux objectifs dans ce
travail.

A la section 1, nous fixons le choix des variables locales d’état indépendantes
pour décrire un fluide pur : ce sont la densité d’entropie s(Z,t) et les variables géo-
métriques : densité de masse inerte m(&,t) et vitesse v (Z,t). A la section 2, on
montre que les équations de mouvement sont univoquement déterminées en termes
des fonctions d’état densité d’énergie interne u, conductivité de chaleur k, viscosité
transversale n et longitudinale £, ces deux dernieres, en vertu du principe d’évolution,
ayant leur signe déterminé par rapport a celui choisi pour la température absolue
T. L’application du principe de Curie a la densité d’irréversibilité i(#,¢) permet
d’établir le caractere défini de la métrique : ainsi [’espace physique est euclidien. A
la section 3, le principe d’équilibre 2b) conduit a un équilibre thermocinétique, qui
satisfait identiquement les équations de mouvement et fixe le signe, par rapport a
celui de T', de la densité de masse m(Z,t) et des modules élastiques de compressi-
bilité a(s) et a(ry. A la section 4 est tentée I'approche linéaire de cet équilibre, qui
fournit les équations d’ondes comme équations de mouvement linéarisées. A cause
des conditions de signe précédemment indiquées, ces équations d’onde convergent
seulement pour le futur : c’est la fleche du temps (section 5).
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3.1 Fluide non relativiste a une seule composante chimique

Il nous faut maintenant fixer les champs physiques nécessaires a la description
d’un fluide chimiquement simple. Nous reportons aux chapitres 5 et 6 les phéno-
menes liés a la présence de plusieurs substances chimiques dans la composition du
fluide, et aux possibilités de réactions chimiques qu’elles présentent. Mises a part ces
questions d’équilibre chimique, un fluide a constituant unique présente déja toutes
les caractéristiques des équilibres thermocinétique et thermostatique.

L’expérience révele qu’un tel fluide est completement déterminé par la donnée
des d + 2 champs de wvariables d’état locales indépendantes suivants : comme va-
riable non géométrique, figure le scalaire densité d’entropie s(,t); comme variables
géométriques on doit prendre le scalaire densité de masse inerte de la substance
du fluide A, que nous noterons simplement m(Z,t), plutdt que ma(Z,t), et les d
composantes covariantes de la vitesse v (Z,t) = {v;(Z,t)}. Soit :

état local du fluide pur : {s,m,v }(Z,t). (3.1.1)

L’évolution du fluide est complétement fixée par les équations de mouvement des
variables d’état locales.

Dans le chapitre précédent, nous avons précisément obtenu, a partir des deux
principes, les d 4+ 3 équations de continuité pour la densité d’énergie h(Z,t), et
pour nos d + 2 variables d’état locales s(Z,t), m(Z,t) et v (Z,t). Nous disposons
donc d’ores et déja des équations de mouvement recherchées, a condition cependant
d’exiger la covariance de ces équations par rapport au groupe de Galilée {G} pour
le fluide non relativiste ', et de rendre compatibles ces équations avec la (d+3)-eme
équation, celle de la densité d’énergie h(Z,t). C’est-a-dire, nous posons h comme
fonction de l’état local, comme il convient de le faire pour 1’élément de systeme
dX(Z). Ainsi :

h(Z,t) = hlv (Z,t), s(Z,t), m(Z,t)]". (3.1.2)

Il est deux fagons de rendre compte de cette compatibilité.

D’une part, le caractere d’extensivité de H, de II;, de S et de M entraine que
cette compatibilité est bien une propriété locale, c¢’est-a-dire qu’il doit exister une
relation linéaire entre les d + 3 équations de continuité, de la forme

Oph + 8k:(vkh +a* + qk) —pa = )\i(@tvi — 9t — ki(ext))

+ As(8ss + O (Vs + j&) — ) (3.1.3)
= )\M (8tm + ak(vkm)) = O,

(W Pour la théorie relativiste du méme fluide, on demanderait la covariance par rapport au groupe
de Poincaré {L}. Puisque la masse n’est pas un invariant relativiste, on remplacerait aussi la
densité de masse m(Z,t) par celle de substance n(Z,t), la substance et le champ formant la
matiere.

®)Nous préférons donner les variables dans cet ordre.
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expression dans laquelle X\, \g et \j; sont d + 2 coefficients non nuls, fonctions de
Z et de t.

D’autre part, et c’est le chemin que nous suivrons, on peut demander que, en
remplagant dans la fluxion locale de h(Z,t) prise en (3.1.2), les fluxions locales des
variables indépendantes par les valeurs qu’en donnent les équations de continuité,
on retrouve précisément la valeur de 9;h(Z, t) fixée par I’équation de continuité pour
h(Z,t). Ce faisant, on tirera également de ce procédé une expression pour la densité
d’irréversibilité i(Z, t) sous sa forme (2.3.1).

Le choix que nous faisons va nous permettre de donner les d 4+ 2 équations de
mouvement désirées en termes des fonctions d’état scalaires des variables scalaires
s(Z,t) et m(Z,t), fonctions dont le signe est en général 1ié a celui de la température
absolue locale T'(Z,t) en vertu du principe d’évolution 2a).

3.2 Equations de mouvement et principe d’évolution 2a)

Vu (3.1.2), la fluxion de h s’écrit
3th = hi@tvi ol h88t$ + hmatm, (321)

avec

k' = 0h[ |/0v;, hy = Oh| ]/0s, hy = Oh[ ]/Om.
Utilisant (2.5.8) pour dyv;, (2.3.3) pour 0;s et (2.5.5) pour dym, on obtient

(9h = W' (=0 Oy + m O+ k() (3.2:2)
+ Ba(— O (0% + 55) + 1) + hon (=0 (v*m))) (Z, 1). o

La demande que cette expression soit identique a celle de I’équation de continuité
pour h s’écrit

(e L' —0(v*h + ¢F + a*) + pa) (F,1), (3.2.3)
dans laquelle ¢ disparait puisqu’il n’y a qu’une seule composante chimique A.

Pour rendre l'identification plus aisée, nous remanions (3.2.2) en utilisant la
régle de Leibniz (différentiation d’un produit) pour mettre en évidence la divergence
Ok (.. .)F du courant et la source, ce qui donne

(00h = =k ((shs + mhun)0* + hyj)
+ him~tgle
+ 0¥ (80khs + MOk, — A Oyv;) (3.2.4)
+ R'm O,

+ hi+ jgakhs) (Z,1).
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A ce point, introduisons la pression locale p(Z,t), en usant de la définition suivante :
(p = shs + mhy, — h)(Z,1). (3.2.5)

Son gradient est ainsi le cofacteur de v* dans la troisiéme ligne de (3.2.4)
(Okp = 5O0khs + MOphy, — h'O;)(Z,1). (3.2.6)

La justification du terme pression pour I’expression (3.2.5) sera donnée incessament.
Nous réécrivons (3.2.4) :

(0th = —0k(ho® + pv* + hyj§) + him~ k=
+ v*0p + Kim 10,7, (3.2.7)
+ hyi + jEOkhs) (T, 1).

Tout d’abord, l'identification de la source py = k‘gm)v" entraine, vu 'arbitraire de

kL% la relation

h' = mv', (3.2.8)
dont I'intégration donne
Lo ik
hlv., s, m| = EmgZ ViU + uls, m. (3.2.9)

L’énergie se compose d'une partie cinétique, sous forme quadratique de la vitesse,
sans pourtant que la métrique soit encore définie positive, puisque la question de la
signature de la métrique reste ouverte. Elle n’est donc pas covariante de Galilée. En
revanche, la « constante » d’intégration u[s,m| = u(Z,t) est la densité de l’énergie
interne U

Ut) = /v L@V (3.2.10)

C’est une grandeur covariante par rapport a {G} puisqu’elle ne dépend que des
variables covariantes s et m. La conséquence de cette division de h en deux parties
est que la pression p, ainsi que son gradient d;p, ne dépendent que de I’énergie interne
et de ce fait, sont également covariants par rapport a {G}. On déduit de (3.2.9) :

(p = sus + muy,, —u = sT +mu —u)(, 1), (3.2.11)
(Oip = sO;T + mo;u)(,t). (3.2.12)

Nous introduisons les définitions suivantes :

1) T(z,t) est la température locale de d¥(Z,t)
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d(dV'h)
(dVm)

w(Z t) = (Z,t) = um[s,m| # hp[v, s,m]. (3.2.14)

Il est quelquefois préférable de définir le potentiel p par rapport a la densité de
substance n(Z,t), reliée & m(Z,t) par

m(,t) = n(T,t)A, (3.2.15)

ou A symbolise aussi la masse de l'unité de substance A. Dans ce cas, on prend
comme variable d’état n au lieu de m ; le remplacement doit alors aussi se faire dans
les indices et dans la loi de conservation forte.

Pour l'identification du courant, nous allons encore une fois récrire la fluxion
locale de 0;h, en tenant compte de (3.2.8) et (3.2.13) (nous changeons quelques
indices muets!).

(ath = — O (hv* + pv* + hskg) + kl(@”)vi
+0'(0ip + 07 (3.2.16)
+ Ti+ j§0kT) (T, ).

Sous cette forme, la deuxiéme ligne contient encore une partie qui contribue au
courant.

Décomposons en effet le tenseur de tension 7% en deux parties, I'une élastique,
indexée (el), l'autre de frottement, indexée (fr) :

rik = pik(el) | pik(fr) (3.2.17)
Nous posons
Fik(el) — —pgik. (3.2.18)

Voila qui justifie le terme de pression pour p, puisque, par définition, au signe pres,
la pression est une tension toujours « normale ” » a la surface.

De ce fait, la partie de frottement du tenseur des tensions est elle-méme symé-
trique :
T = FER) (3.2.19)

En abaissant I'indice k, et en tenant compte que g% gy, = &%, il vient alors
% = —pdt + 75U (3.2.20)

et
O™ = 8pd¥; + Op*; = Bip + AT, (3.2.21)

®)Dans le sens d’'une métrique encore non définie.
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ce qui est précisément le facteur de v’ dans la deuxiéme ligne de (3.2.16). Pour
pouvoir écrire cette deuxieme ligne de fagon covariante par rapport a {G} nous
allons procéder aux transformations suivantes :

’Uiﬁkai(fr) = 8k (Tki(fr)?]i) — Tki(f’”)(‘)kvi

_ , (3.2.22)
= —ak(—Tki(fr)UZ) — Tkl(f’")akvi.

Nous introduisons ici le gradient symétrique de la vitesse v, donc vérifiant vy, = v,
défini par la relation

QUZ-k(f, t) = (311)19 + akvz)(f, t) = QU(ik)(f, t). (3.2.23)
Ce tenseur est aussi covariant par rapport {G}. 1l vient donc
V'O TR UT) = —8k(—7ki(f”vi) — 7RIy, (3.2.24)

En fin de compte, 'expression de la fluxion locale de h se raméne, compte tenu de
(3.2.20), &
(8th — _ak(hvk 4 T]{; . Tkﬂ]i) + k(emt)vi

, ’ (3.2.25)
+ T + ]gakT - Tkl(fr)vki) (f, t)
Dans cette expression, toute la deuziéme ligne est covariante par rapport a {G}.
On a donc 'expression voulue pour 0;h si 'on fait les identifications suivantes

k(= doit kN /= ez
¢*(Z,t) = (Tjd)(Z, 1) densité de courant de chaleur
° (3.2.26)

af(z,t) L — (%) (Z, 1) densité de courant de travail,

et si 'on annule identiquement la deuxiéme ligne, ce qui donne une relation pour la
densité d’irréversibilité 7, qui ne peut étre négative par le deuxiéme principe 2a) :

i(Z, 1) LT (=0 T + 7FUu)|(Z,8) > 0. (3.2.27)

Il est important de mettre en évidence la nature tensorielle des termes qui contri-
buent & cette densité. Puisque 7%(/") comme v;; sont symétriques, ils sont 1'un et
lautre décomposables en un scalaire (leur trace) et un tenseur symétrique a trace
nulle. Leur produit est aussi de la méme forme :

7

A 1 ~
PR, ;lfﬂ(f”vmm + TR0, O (3.2.28)

De cette maniere, il y a trois contributions a la source d’irréversibilité : une scalaire,
une vectorielle et une tensorielle du deuxiéme ordre irréductible, en effet

1 osr | A B}
i(@,t) = T™Y&, 1) (affy by 4 (%, —9T) + T<k’><fr><0>v§$,g)> (#,t) > 0. (3.2.29)

i(Z,t) se présente donc comme le produit de trois « forces thermodynamiques » X, :
{(1/d)v™, =0T, vfg)} connues (composantes : 1 pour le scalaire, d pour le vecteur,
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(1/2)d(d + 2) pour le tenseur irréductible) avec des « courants thermodynamiques »
J, correspondants, {ng(f 2! 7, Thilf 7’)(0)} qui, eux, sont inconnus. On a donc

Y X)) (E ) > 0. (3.2.30)

Cette relation est satisfaite identiquement si on en fait une forme quadratique en
X

A cet effet nous introduisons les coefficients phénoménologiques Loz(Z,t) tels
que

Jo= LapXp. (3.2.31)

Ce sont des fonctions d’état, non forcément locales, mais qui doivent étre covariantes
par rapport a {G} (donc dépendantes des seules variables covariantes) :

Lag(f,t) = Laﬁ[gika @vk,... 8” <oy

? .. ’Ln

ar om0 m,. L,

T T 7«n ? .. 7«n

(3.2.32)

ou ;. , représente une dérivée spatiale du n-iéme ordre.

Ce faisant, ¢ se présente comme une forme quadratique définie non négative :

= (T Y LapXaXg)(&,t) > 0. (3.2.33)
a B

Nous sommes amenés a un cas intéressant si nous formulons 1’hypothése sup-
plémentaire suivante (qui n’est en fait qu'une approximation) : les Lng sont des
fonctions d’état locales.

Sous cette hypothese, en effet, les L,3 ne peuvent dépendre que des variables
locales s et m, qui sont scalaires, et par conséquent ne peuvent étre euz-mémes que
des scalaires Log[s,m].

Alors toute connexion entre « forces thermodynamiques » de nature tensorielle
différente devient impossible (principe de Curie), puisque le seul tenseur laissé a
disposition est le tenseur métrique, qui agit sur la variance d’'une grandeur mais pas
sur sa nature.

Par conséquent, dans 'expression (3.2.29) de i, les parties scalaire, vectorielle et
tensorielle, doivent étre séparément non négatives.

On posera ainsi :

L 3.2.34
5@ 1) = ( (3.2.34)
FRINO)(F £) = 2

avec les grandeurs, fonctions d’état :
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o k est la conductivité de chaleur,

¢*(Z,t) = (—rO'T)(Z, 1), (3.2.35)
e 1 est la viscosité transversale,
o &' est la wviscosité longitudinale.

La densité d’irréversibilité ¢ prend la forme
i(Z,t) = (KRT20,TOT + T~ (2™ + €' (v%)?)(Z, ) > 0. (3.2.36)

Les termes vectoriels et tensoriels font intervenir la métrique {g;,} qui doit donc étre
définie pour assurer 'inégalité requise :

{gir} > 0 (ou <0). (3.2.37)

Il n’y a pas perte de généralité a la prendre comme définie positive, ce qui fait de
l’espace physique un espace euclidien. Ce choix implique alors les conditions de signe
suivantes :

k(Z,t) >0, (3.2.38)

la conductivité de chaleur n’est jamais négative,
(n/T)(Z,t) > 0et (£/T)(Z,t) > 0. (3.2.39)
les viscosités transversales et longitudinales ont le signe de la température absolue T'.

Remarque.

L’expression pour 7" prend deux formes possibles :
ik(fr)(—» t) _ (2 ik(0) iket, £N(=
THI(, no™ + g€ (Z, 1)
b ke (3.2.40)
= (2" + g"€v)(, 1),

ce qui conduit a un autre coefficient de viscosité logitudinale £ relié a & par la
relation

E(Z,t) = (£ —2n/d)(Z,¢). (3.2.41)
On a alors la condition de signe
((€+2n/d)T)(Z,t) > 0. (3.2.42)

Le systeme des équations de mouvement s’exprime maintenant sous la forme
sulvante

(Ors + O (vFs — T'ROFT)) (2, 1) = i(Z, 1), (3.2.43 5)
(Oem + O (v*m)) (Z,t) = 0, (3.2.43 m)

(m(@tvi + 05 Ov;) + Bip — O ((B” + ;) + 555@&)) (Z,t) = k(&) 1),
(3.2.43 v;)

@ La forme explicite de i étant donnée en (3.2.35).
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ol on a utilisé la notation : & = ¢*9,. Les équations de mouvement sont ainsi
univoquement déterminée en termes des fonctions d’état

{u, K, n, £}s,m] (3.2.44)

dont les deux derniéres, en vertu du principe d’évolution, ont un signe déterminé
par rapport a celui choisi pour la température absolue 7.

3.3 Deuxieme principe 2b) et équilibre cinétique
Pour un fluide, la fonctionelle ¥[...] prend la forme suivante :

ww<xs<»nwnzzjkdexa

v
: 1 . 3.3.1
= (S+9H — ('TI; — §w’kMik — BM)].. ] (3:3.1)
= Max.
En conséquence, nous obtenons d’abord les conditions nécessaires et suffisantes pour
la stationnarité du premier ordre : SVW[...] = 0.
(@) = (m(9v' — (¢ + wzy)) L0, (3.3.2 v;)
bs(Z) = 1 4 uy(Z) = 1+ 9T(F) 2 0, (3.3.2 )
2 :
Ym(Z) = <19<% I u) — v(Ct + wixy) — ﬁ) (Z) iy, (3.3.2 m)
Ce systeme de d + 2 équations peut se récrire sous la forme suivante :
3@ =9 (- [TAT]) (pourd=3), (3.3.3 7)
T(%) = -9, (3.3.3 5)
L v v?
pl@) = 078+ 2)(@) = (@) + 5 (@), (3.3.3 m)

Ainsi :
1) Le mouvement se fait & vitesse linéaire 9~'( et vitesse angulaire —9~1 & constantes.

2) La température T'(Z) est constante dans X.

3) Le potentiel chimique u(Z) augmente sur les bords du systeme.

®)Compte tenu de (3.3.2 v;).
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La premiere condition entraine
(9tvz- = 0, Vik — 0, Ugg =dive=0 (mais @vk = Wik # 0) ! (334)
la seconde
oT =0, (3.3.5)
et la troisieme
oip(Z) = (Mo (%) = (mv*0;v,) (%) # 0. (3.3.6)
On vérifie alors que les équations de mouvement sont identiquement satisfaites

pour un fluide a une seule composante chimique A

D’abord, en se reportant a (3.2.34), on constate que les termes de frottement et
le courant d’entropie disparaissent :

TR (7)) = 0, 3.3.7
7s(Z) =0, (3.3.8)
ce qui entraine que pour (3.2.36) la densité d’irréversibilité est nulle :
i(Z) = 0. (3.3.9)
Les équations de mouvement se ramenent ainsi a
$(%) =0, (3.3.10 s)
() = 0. (3.4.10 m)

Il y a ainsi d’une part conservation forte de l’entropie S et de la masse M, et d’autre
part la fluzion substantielle f pour tout scalaire f[s, m] (covariant par rappot a {G})
disparait pour ce mouvement.

Quant a I’équation pour o, il vient :
(mv; + 0ip = m(v*Ov; + v*9;u1) = mv*2uy) (E) = 0. (3.3.10 v;)

On vérifie qu’il n'y a pas de force extérieure, comme il faut s’y attendre a 1’équilibre !

(2 — 200).

Passons maintenant aux conditions nécessaires et suffisantes pour le maximum
s@U[.. ] <o.

La forme quadratique

Yoy g,
VE thes hem | (£) <0 (3.3.11)
w’ﬁn ’l/}ms wmm

6)Ce n’est pas une trivialité. Pour un fluide & plusieurs composantes chimiques 4, B, ..., C,

on aura des conditions & imposer pour que ces équations soient satisfaites! (cf. chapitre 5).
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nous donne les conditions, une fois évaluées les dérivées partielles secondes a partir
de (3.3.2) :

{(¥"* = Img™ = —(T"'m))(@)g"*} <0, (3.3.12 ik)
W@Zﬁ%f:(szD() —(T7'T)(Z) = —c (%) <0, (3.3.12 ss)
( = ﬂusm =—(T" 1usm))( T), (3.3.12 sm)

(T~ )

ﬂ
t)—‘
&
IA
@)

(3.3.12 mm

Ainsi, a nouveau, on tire de (3.3.12 ik) que la métrique doit étre définie (signat(g...) =
+(1,1,...,1), nous la choisissons définie positive) et que [’espace physique est donc
euclidien. Ensuite on trouve que la densité de masse inerte a le signe de la tempé-
rature absolue T :

(T~ 'm)(z) > 0. (3.3.13)

De méme, de (3.3.12 ss), on tire que la capacité de chaleur ¢ par unité de volume et
a densité de masse constante '’ n’est pas négative :

o(&) = (T/T,)(®) > 0, (3.3.14)

et il en est de méme pour la conductibilité de chaleur : x(Z) > 0.

Enfin la forme bilinéaire

7! <“ “Sm)(f)zo (3.3.15)

ums Umm

a pour conséquence que le module élastique de compressibilité isentrope a(sy, défini
par

a(sy = (8%Uss + 28MUgyy, + M U ) (Z) (= =V ' 0p[S, V, M]/OV) (3.3.16)
a également le signe de la température absolue 7' :
(T as))(Z) > 0. (3.3.17)

Cette condition est d’ailleurs valable également pour le module élastique de com-
pressibilité isotherme a(r).

(DPour un d%(F), on a en effet :

dV (2)éuls, m] = dV (B)usds = (dV(T/Ts)[s,m]6T)(Z) = (dVc)(Z)T ().

®)Le troisiéme membre provient de I’équilibre statique :
s=8/V, m=M/V, U[S,V,M] = Vu[s,m], p[S,V,M] =—-0U|[S,V, M]/0V

et
—V1op[S, V, M]/O(V = (5*uss + 25MUgr + M Umm)[S, V, M].
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En effet, en conséquence du principe d’équilibre, puisque la température T =
—19~! est constante dans le systéme, on peut utiliser le formalisme de [’énergie libre
F (voir section 1.9).

Cela revient a poser une nouvelle fonctionnelle ®[v, m]| dans laquelle seules les
d + 1 fonctions {v (Z), m(Z)} sont a varier

(D[Tv U-( )7m( )] = <H(Cm) + F— CIH% - %WikMik - ﬁM> [T7 U-( )7m( )]

- [@wo@
14
v? : : (3.3.18)
- / av (m + F[T,m] —~ m(¢ — wa) — fm) (@)
1%

doit J Min 81 T <0,

| Max siT >0
La premiere variation redonne les équations (3.3.3 ¢’ et m), avec

fIT,m|(Z) = u[T, m)(Z)

La deuxieme variation donne alors, en particulier, une condition sur le module de
compressibilité isotherme a(r), défini par

(acry = M frum) (Z) (E —V=H(aplT,V, M]/8V)(:E)) . (3.3.19)
De la forme quadratique, on tire donc
(T~ aem)(Z) 2 0 (3.3.20)

condition identique a (3.3.17). Ainsi les deuz modules de compressibilité ont-ils le
signe de la température absolue T

3.4 Approximation linéaire des équations de mouvement

Considérons notre systeme isolé Y, a I’équilibre. Si nous 1’étendons a ’espace
tout entier, ce que nous indiquerons par la notation 255, cet équilibre est forcément
I’ équilibre statique.

Nous indexerons alors avec I'indice (o) les valeurs a I’équilibre statique aussi bien
des variables d’état

Uz‘(O) = 0, 8(0), m(o) (341)

) Voir la note précédente.



Thermocinétique du fluide a une seule composante chimique 93

que des fonctions d’état, par exemple :
Us(0) = Us[8(0), M(0)] = T(o)-

Ces wvaleurs sont des constantes.

L’ approxzimation linéaire consiste a considérer des états voisins limites de cet
équilibre, en donnant aux variables d’état une valeur « infiniment » proche de celle
de I'équilibre :

v (%, t) — 0, s(&,t) —s0) — 0, m(Z,t) —me — 0, (3.4.2)
ce qui implique que les fonctions d’état prennent aussi une valeur « infiniment »

proche de celle a I'équilibre. Par exemple T'(Z,t) — T(o) — 0 également.

Dans les équations de mouvement, on négligera alors tout produit d’écarts, aussi
bien des variables que des fonctions d’état (qui sont développées en série de Taylor),
comme un « infiniment petit » du deuxieme ordre. Ainsi :

vFs = vF(s0) + (s — 8(0))) — v*s(0),

vFm = v*(m) + (m — myg))) — vm),

(054)2 —0; V0, — 0 vik(o)vik(o) — 0,
— —_—
(T_ll{) grad (T = T(O)) — (T_ll{)(o) grad (T = T(Q)).

Dans ces conditions, les équations de mouvement (3.2.43) deviennent

05 + O (UkS(O) = (T_ll*{)(o)akT> =0, (343 S)
oym + mpydiv 7 =0, (3.4.3 m)
m(o)aﬂ)i -+ 8Zp - 277(0)(%1172 — f(o)@lleQ_f = kgext). (343 Ui)

Dans (3.4.3 s), le second membre est en fait la densité d’irréversibilité ¢ > 0. Mais si
on se reporte a la forme (3.2.35) de 4, on voit qu’elle est essentiellement quadratique
dans les écarts, et par conséquent nulle au premier ordre.

Nous allons remanier les équations (3.4.3), de fagon qu’elles ne contiennent que
les d+2 variables indépendantes sous forme de leurs écarts. On peut en effet toujours
ajouter les constantes, valeurs d’équilibre, sous les opérateurs différentiels. Cette ma-
niere de faire présente ’avantage d’avoir seulement des quantités « infinitésimales »
a traiter.

On a d’abord, toujours dans ’approximation linéaire

— — —
grad T' = ugsygrad s + ugm)grad m, (3.4.4)

— — —

grad p = (5uss + Mgy 0)grad s + (SUgm + MUpmm ) (0)grad m. (3.4.5)

Alors, I’équation de mouvement pour s — 5(g) s’écrit

8,5(8 = S(o)) + S(O)diVU

K (3.4.6 s)

— — — — _1 — =
<C>(0)A($ S(o)) (T /fusm)(o)A(m m(o)) 0.
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compte tenu de la définition de ¢ en (3.3.14) et des formules suivantes (¢ : scalaire,
a : vecteur) :

- . ——— . — —
Ay = divgrad p, Ad = grad divad — rotrot a.

Celle de m — mg) a déja la forme voulue :
0 (m — mg)) + moydiv v = 0. (3.4.6 m)

Avant d’écrire celle pour v, nous remarquons que ces deux premieres équations sont
couplées (s, m, ¥ pour la premiere ; m et ¥ pour la seconde). Cependant le couplage
avec U ne se présente que par la divergence de .

Or on sait que dans l’espace métrique on peut toujours décomposer un vecteur
U en une partie longitudinale U) et une partie transversale U, . Cette décomposition

est unique et par conséquent irréductible par rapport aux groupes {O} et {G}

. .
¥ =7 + U, = —grad ¢ + rota,

divdy # 0, rotd) =0, A# = graddiv, (3.4.6%)
diV'l_)'J_:O, I'(O—ij_]_;é(_)», Alz—r—o_%razﬁ.

Ainsi, ¥ ne se couple a s et m que par sa partie longitudinale .

Cette décomposition permet de plus d’obtenir une équation découplée pour
I’équation de mouvement de v, :

oL — (n/m) AU = E(fm . (3.4.6 7))
Pour la partie longitudinale, on obtient

—_—
grad(—m(o)ﬁtgo + (SUss + MUsm ) (0)S + (SUsm + MUpm ) ()M
(3.4.6 7))

—

+ (€ + 277)(0)A90) = kY = —grad x.

Notre systeme des d+ 2 équations de mouvement, couplées, sauf pour (3.4.6 ¥/, ), est
maintenant donné en termes de d + 2 wvariables indépendantes {s, m, U, ¢}. En
effet, div v, = 0 entraine que seules d — 1 des v;; sont indépendantes. Nous prenons
© comme derniere variable. Cela implique la méme condition pour ¢ que pour les
autres variables : ¢’est-a-dire présenter un écart « infiniment » petit par rapport a la

(OPour d # 3, vy = —0ip et v = —Oka®; avec a’* = alikl.

(1) Nous avons décomposé k(¢*!) en
Rt = B 4+ B = —grad x + rot b,

comme nous ’avons fait pour ¥/; voir aussi la note précédente.
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valeur d’équilibre ¢ (. C’est possible, puisque en fait ¢ est donnée par son gradient,
donc définie a une constante arbitraire ¢ pres.

Nous nous intéressons maintenant a l'obtention des équations différentielles dé-
couplées, aux fins de leur résolution.

1. — Comme déja remarqué, I'équation (3.4.6 U,) pour des ondes transversales
infinitésimales U, présente déja ce type. Elle est de la forme

(0, — al)fL(Z,t) = p(Z, 1), a>0 (3.4.7)

avec « = (n/m)@y = 0 et fi(Z,t) un champ infinitésimal représentant n’importe
quelle composante v; | (Z,t).

Sous cette forme c’est [’équation de conduction de chaleur a variables géomé-
triques constantes. C’est bien celle-ci, en effet, que ’on va dériver a partir de I’équa-
tion de mouvement pour (s— s ), dans le cas ot on laisse les variables géométriques
constantes.

Alors 0 = 0 et m = m(g), ce qui entraine que (3.4.6 s) prend bien la forme
(3.4.7) homogene, avec a = (k/c)y > 0 et f1(Z,t) représentant (s(Z,t) — s())-

Mais dans ce cas, I’énergie intérieure u ne dépend plus que de s : u = u[s], ce
qui conduit a la relation de proportionnalité

T — T(O) S Ts(o)(s - 8(0)). (348)

On obtient donc bien « I’équation de conduction de chaleur a variables géométriques
constantes »

(T = Tio)) = K@ AT = T()) =0 (3.4.9)

qu’on écrit sous cette forme parce qu’on a I’habitude de la dériver de la relation
Ou+divg=0 (3.4.10)
qui exprime la continuité pour l’énergie, a variable géométriques tenues constantes.

2. — Un autre cas de découplage se présente lorsqu’on a affaire a des ondes lon-
gitudinales v)| isentropiques, c’est-a-dire dans le cas limite ou la conductibilité de
chaleur tend vers zéro (k — 0, cas isentrope).

En effet, dérivons par rapport au temps ¢ I'équation de mouvement (3.4.6 7j|) et
omettons le gradient (nous rappelons que ¢ — ¢ est aussi un infiniment petit). Il
vient :

—m)0; (0 — ©(0)) + (Stss + Mtism ) (0) B:(s — 5(0))
+ (SUms + MUpmm ) (0) O¢(Mm — m0)) (3.4.11)
+ (£ +2n)0) A0 — »() = O(X — X©)-
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Mais dans ces conditions,

Oi(s — S(o)) = 5(0)A<90 - 90(0))'

De méme,
d(m —m)) = mo) (e — ¢(0))-
Tenant compte également de la définition du module de compressibilité isentropique
) donnée en (3.3.16) (avec la remarque que (sugs + ...)0)S0) = (S*Uss + - - -)(0))
on obtient :
(07 = ciis)22 = (cto))D:) fi(Z, 1) = 0(x — X)) (3.4.12)

—
Ji(@,t) représentant (¥, t) — (o). Mais comme on peut opérer avec —grad sur

(3.4.12), vu sa linéarité, f(Z,t) représente aussi n’importe quelle composante v;(, t).

Dans cette équation, les constantes sont non négatives, puisque données par les
relations :
C|| = (a(s)/m)o)

(C||t0) = ((€+ 277)/7”) 0 20

avec, pour dimension, celle d’une vitesse au carré, d’une vitesse au carré fois un
temps respectivement.

(3.4.13)

3. — Dans le cas isotherme (k — o0), les ondes transversales ¢/, suivent les
meémes équations que dans le cas isentrope (77(0)(T) au lieu de 70)(s)). Mais des ondes
de chaleur ne peuvent pas exister, puisque T'(Z) = T = constante !

Un calcul simple, utilisant les mémes procédés, nous donne [’équation d’ondes
longitudinales U (ayr) au lieu de a(g)(s)). Vu (3.4.13) pour (S) et pour (1), on a
la relation suivante entre les carrés des vitesses isentrope et isotherme :

cles) = (as)/a)) @) ry- (3.4.14)

3.5 La fleche du temps

Comme dans les exemples du premier chapitre, ce sont les deux parties : évolu-
tion et équilibre du deuxieme principe qui déterminent le signe des constantes dans
les équations de mouvement linéarisées. Comme celles-ci contiennent des dérivées
d’ordre impair par rapport au temps (9;), elles ne sont pas covariantes par rapport
a linversion du temps T, définie en (1.2.2). Les solutions qu’elles admettent, en
général, n’existent que pour le futur (¢ > 0). C’est le phénomene de la fléche du
temps.

Pour la résolution, nous prenons la métrique euclidienne g;. = % ce qui entraine
) ik k

A= Z = (9,0). (3.5.1)
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1. — Ondes transversales (3.4.6 f,).

Une solution particuliére de (3.4.6 f)) est obtenue en posant (nous négligeons
I'indice |) :

f(@ 1) = §R( foeiK’?’f)*@(’?)ﬂ) (3.5.2)
qui devient avec (k% = > k?) :
—ie(k) = —iw(k?) = —y(k?) = —ak?® < 0, (3.5.3)
soit , ~
F(@1) = foe~* tcos<(k, z) + 5). (3.5.4)

Les « ondes de chaleurs » sont donc des ondes stationnaires, avec un amortissement
dans le futur d’autant plus grand que « la longueur d’onde » A = (2m)~!(k?)~1/2 est
plus courte.

Nous cherchons maintenant la solution générale pour la condition initiale f(Z,0)
donnée. Vu la linéarité, elle doit avoir la forme

1@.6) = [ @K - 5.01.0), (355
1%
ou le noyau K,4(7,t) satisfait a I’équation (3.4.6 f,) et a la condition initiale
lir% Ky(Z,t) = Kq(2,0) = 6(2), (3.5.6)

d(Z) étant la distribution de Dirac.

Nous trouvons ce noyau en recourant a la transformation de Fourier (T.F.).
Pour commencer, nous nous restreignons au cas d = 1 (Z =z, k = k). Alors la T.F.
(k) d’une fonction ¢(x) d'une certaine classe est donnée par

“+oo
Y(k) = (2m)~1/? / dre™ ™ ¢(z). (3.5.7)
La transformée inverse est donnée par la relation
+o0 )
d(z) = (2m) 12 / dke* (k). (3.5.8)
Nous avons alors :
+o00
f(z,t) = (2m)~1/2 / dke* =¥t g(k), (3.5.9)
et .
o) = @n) 2 [ dye s (3, 0) (3.5.10)

(12)% signifie « partie réelle de ».
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En substituant g(k) dans (3.5.9), on obtient :

f)= [ +Ooczy(@w)-l / - dk<>) o)

0 [e.e]

. (3.5.11)
_ / dyKy(z — y,)f(y,0)

o
dans laquelle on a changé I'ordre des intégrations. Par identification, on détermine

le noyau :
+oo

Ki(z,t) = (2#)_1/ dkehe—ak?t

qui a bien pour limite, t — +0, la distribution de Dirac §(z). Pour ¢ — oo on
trouve f(z,t — 00) — 0. Comme « > 0, cette intégrale ne converge que pour
t > 0. Ainsi, étant donnée la condition initiale, les solutions n’existent que pour le
futur.

Pour évaluer cette intégrale, on peut procéder de la fagon suivante ; on pose :
—ak®t + ikr = —akt — 2*(4at)™" avec k' =k —i(at) 'z
et on integre sur dk’ de oo — in a +oo — in. La contribution du parcours a +oo de
0 a wn est nulle.
On obtient alors pour K(z,1)

+oo—1in
K, (x’ t) _ 6712/4at / dk/(Qﬂ,)—lefatk 2
—00—1n

(3.5.12)

(dmat)~1/2e=2* /4t pour ¢ > 0
d(z) pour ¢t = +0.

C’est une fonction de Gauss, dont la largeur 2(at)'/? croit proportionnellement &
t1/2. Elle est normalisée & 1 :

+oo
/ deKi(xz,t) = 1pourt >0 (3.5.13)

[e.9]

de fagon a représenter une distribution 6(x) a t = +0.

Pour d > 1, les transformées de Fourier se factorisent et les noyaux aussi. Comme

dV(7) = d'w = [[da*, 'k =] dk",
k k

ei(E,f) _ H eikk$k7 e—ak2 _ H 670&’6?7
k J
oo (3.5.14)
B(F) = (2m) 2 / dre D7)
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Alors
+oo e ) .
£@.6) = @n) o [ atheth-ery ), (3.5.15)
- +w o o
oF) = Cry 2 [ av@e (g0, (3.5.16)
et
Kd(fa t>: H Kl(xku t)
k
2 3.5.17
| (4mat) =427l /%0t pour ¢ > 0 ( )
6@ pour t = +0.
2. — Ondes longitudinales (3.4.6 f)).

Nous nous occupons de I'équation homogéne x(&,t) — x () = 0.

La solution particuliere contient deux termes :

iéﬁ(fa ) W) (3.5.18)

car, substituée en (3.4.6 fj), elle donne une équation quadratique pour & :
—@? — i(cjtok™)0 + cfk? = 0 (3.5.19)

dont les deux solutions w; et wy sont

A T ~ 2 . 2 k2 272 t0k4

w;(k) = w;(k‘ )= —i C”tQE + (chz c” 1 > : (3.5.20)
Nous avons donc a traiter deux cas, selon que k? est inférieur (amortissement faible)
ou supérieur (amortissement fort) & la valeur k2, = 4(0” 21

a) Amortissement faible. C’est la cas ou :

k? < kg = 4(cit3) ™ (3.5.21)

Les racines w1 sont complexes :
2

01 = Fw(k?) —iy(k?) (3.5.22)
w(k?) = (K — b Jk20,)) " = (kz)(kzjgz - 1)1/2 >0, (3.5.23)

2

1 i
7(k?) = =citok® = ¢

> 0. 3.5.24
2 kma:r o ( )
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Les deux termes de la solution particuliere sont donc

B)Fw(k?)t+iy(k?)t]
fi(@ ) = (fle )

) (3.5.25)
— f;e’” Cos(i(k,f) —w(k?)t).

Ils représentent des ondes progressives, avec une vitesse de phase® < cﬁ, qui avancent

dans la direction j:l;, et présentent un amortissement.

b) Amortissement fort. C’est le cas ou :

k2 > kg, = 4(ct3) ™ (3.5.26)

max

Les —i@1 sont réels, car w(k?) = iy(k?)(1 — k2, /k*)Y/? :

2

i k2 0 200 | —cte
—w;<k2>=—v<k2>z—v;<k2>(1¢<1— = >”2) : {_ (3.5.27)

Q.

Les deux termes de la solution particuliere sont alors :
N ey (K2 o (K2 -
f1 (@, t) = %(féel(k’x)>e e fre e cos((k, ) — b1). (3.5.28)

Ils représentent des ondes stationnaires amorties du type des ondes transversales ou
des ondes de chaleur.

Pour construire la solution générale, comme nous avons un opérateur 0? en
(3.4.6 fj), nous devons donner commme conditions initiales les valeurs f(Z,0) et

atf(f, O).

La solution se présente donc sous la forme :
1@0 = [ V@D (7 - 7.07@.0) + Dz - 7,00 G0),  (3.529)
14

ol les deux noyaux D (Z,t) et D(,t) satisfont a I'équation d’onde (3.4.6 f)) et
aux conditions initiales :

D(&,0) = 8(Z), 8Dy (&,0) =0,

(3.5.30)
avec D(Z,0) =0 et 0,D(Z,0) = 0().

Ces noyaux peuvent étre facilement construits si on décompose, dans le développe-
ment de Fourier, I'intégrale sur k£ en deux parties

0o Bnaas +o0o
/ dk :/ ddk+/ dk, (3.5.31)
0 O k’ma:c

la premiere s'étendant sur tout k soumis a (3.5.21), et la seconde sur tout k satis-
faisant (3.5.26). On procede symétriquement sur 'intervalle (—oo,0).
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Les noyaux se présentent alors sous la forme

D(Z,t) = Dy (17, 1)
kmaz -
- (27r)d( / ddk% (HFED =121 4 ) (k2) — c.c.)
0

o0 .
+ / ddk:<(72 = 71)_1(k2)ei(k’x) (yoe™ ™ — 716_72'5)(/62))), pour t > 0,
kmaI

(3.5.32)
et

D(@ 1) = D, 1
kma/x -
_ (271’)_d </ dd/{}( . 22@)(/{32))71 (ei[(ki)—w(kz)t}—W(kZ)t . C.C.)
0

+o0 =
+/ ddk<(’}/2 . ,}/1)71<k2)ei(k‘-$)(e*’71t _ e’th)(k2>>), pour t>0.

(3.5.33)
IIs satisfont 1'un et l'autre a I’équation d’onde (3.4.12) puisqu’ils sont construits
comme des sommes sur toutes les solutions particulieres. En plus, posant ¢ = 0
apres que 'opération 0; a été faite, ils satisfont bien les conditions initiales, dans la
limite ¢ — +0. En effet, vu (3.5.27), ces intégrales de Fourier ne convergent que
pour t > 0. Pour t = 0, seule donc existe la limite ¢ = +0.

Nous voyons ainsi que deés qu’il y a conduction de chaleur ou frottement, une
fois données les conditions initiales f(Z,0) pour (3.4.6 f1); f(&,0) et 0,f(Z,0) pour
(3.5.6 f)), les solutions f(¥,t) n'existent que pour le futur t > 0. Les solutions pour
le passé t < 0, en général, n’existent pas.

Cela reste vrai pour les équations couplées inhomogenes (3.4.3).

Ce fait capital est dli aux signes des constantes dans les équations linéaires,
conséquence du deuxiéme principe 2a) évolution et 2b) équilibre.

Nous appelons ce phénomene la fleche du temps.

On vérifie qu’en absence du frottement (cﬁto) =0,o0na
D(t) (f, t) = éﬂ)(f, t)

et, pour d = 3,
1

D(|7],t) = e

(O(1Z] = ¢yt) = o(|7] + ¢yt)) (3.5.34)
qui représente deux ondes sans dispersion w(k?) = ¢ k| : une onde sphérique inci-
dente sur l'origine et y étant réfléchie comme onde sphérique émergente. Alors, des
qu’il n’y a pas de frottement, le passé existe. Mais ceci représente un cas limite, qui
n’est réalisé que pour la substance qu’on appelle le fluide parfait.

(13)¢.c. désigne le terme conjugué complexe (i — —i)






CHAPITRE 4

Thermostatique du fluide

a une seule composante chimique

Présentation

Enfermons le fluide dans une boite rigide, de volume fixé. Nous ((i_étruisons de
ce fait ’homogénéité et l'isotropie de l’espace : les contraintes sur Il et sur M
disparaissent, remplacées par une contrainte nouvelle sur le volume V. L’équilibre
étant statique, seule I’énergie interne U intervient, non plus comme fonctionnelle,
mais comme fonction d’état : ¢’est un potentiel thermodynamique. Toute une série
d’autres potentiels est alors obtenue par applications répétées de la transformation
de Legendre. En particulier, le potentiel de Gibbs donne lieu au théoréme de Gibbs :
sa valeur spécifique est égale au potentiel chimique (section 1). Les dérivées partielles
secondes de ces potentiels font 'objet des relations de Maxwell, importantes dans
la pratique (section 2). La section 3 reprend 1’équilibre en présence de plusieurs
phases et présente la regle de phases tandis que la section 4 enchaine sur 1’étude
des courbes de coexistence entre deux phases. On passe alors aux relations entre les
deux capacités de chaleur Cy et C, (section 5) et entre les deux modules élastiques
de compressibilité a(g) et a(ry (section 6).

En faisant exécuter au fluide un cycle de Carnot, on en fait un thermometre qui
réalise une échelle empirique de la température, a partir de laquelle on peut créer
I’échelle des températures absolues (section 7). Cette derniere est aussi approchée
par les gaz lorsque la pression devient tres faible. On arrive ainsi au modéle fort
important du gaz parfait, dont I’énergie interne ne dépend que de la température
absolue (section 8).

L’inaccessibilité de la température absolue T' = =40 fait I’'objet de la section 9, en
relation avec ce qu’on appelle principe de Nernst ou troisieme principe de la ther-
modynamique : les isentropes, qui doivent chacune couper toutes les isothermes,
admettent pour enveloppe l'isotherme T = 40, parce que, pour un systéme sub-
stantiel, la densité de masse doit avoir le signe de 7' d’apres le principe 2b). Nous
donnons ensuite a la section 10 le potentiel de Gibbs pour une phase condensée.

Enfin, la section 11 traite de la pression de vapeur.
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4.1 Les quatre formes d’équilibre
et les quatre potentiels thermodynamiques
Théoreme de Gibbs

En thermostatique, nous considérons le systeme ¥, composé d’un seul fluide,
enfermé dans un récipient fixe d’enceinte C'(7) = 0 a volume donné V = V’. Par
conséquent, il ne peut plus y avoir ni homogénéité (II; = II}) ni isotropie (M;x, = M}})
de l'espace. Aussi le principe d’équilibre 2b) prend-il la forme simplifiée

S = Max avec les contraintes H = H', M =M', V =V". (4.1.1)

Soit la fonctionnelle

¥o.Oss0O)m()) = | @V6)(@ = (S +0H — FM ~ VL. .

= Max.
Comparant avec (3.3.3 ¥) on trouve d’abord que
7(Z) = 0. (4.1.3)

Par conséquent, on peut remplacer I’énergie H par la seule énergie interne U. Comme
(3.3.3 s) reste valable, c’est-a-dire que —1~! = T garde sa signification de tempé-
rature (constante), il est avantageux de multiplier (4.1.2) par ¥~ pour obtenir la
nouvelle fonctionnelle des deux seules fonctions s(Z) et m(Z) :

Bls( ),m( )] = / (@Ve)(@

= (U+97'8 =M —V)[.. ] (4.1.4)
~ JMin  pour 7" >0
| Max pour T' < 0

dont on a a prendre le minimum ou le maximum suivant le signe de 7.

1. — Premiere forme du principe d’équilibre : énergie interne U.

On peut d’abord interpréter cette condition par la suivante :

Min siT >0 avec les contraintes

Ul:0).mOl = {Max ST<0 S=8, M=M,V=V. (4.1.5)

On fait ainsi de I’énergie interne U le premier potentiel thermodynamique. De I'in-
tégrand ¢(Z) en (4.1.4), on tire :

ols,m](F) = (uls,m] + 9715 — Bm — 7)(@), (4.1.6)
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et la condition de stationnarité §)®|...] = 0 redonne :

05 =us + 9 =T (@) + 07 Lo (4.2.7 s)

doit

Pm = Uy — B = p(T) =8 =0, (4.1.7 m)

relations qui expriment que la température 7' et le potentiel chimique g ' sont des
constantes.

On en déduit que les deux variables s = s[T, u] = S/V et m = m[T, u] = M)V
sont aussi des constantes. On peut donc les éliminer et écrire U comme fonction
d’état (puisque u[s, m] est aussi constante) :

UIS,V,M] =Vu[S/V,M/V] (4.1.8)
dont la premiere variation donne

SU[S,V, M| = us6S + (u — sus — muy,)0V + w0 M

(4.1.9)
=T0S — poV + poM.

On a utilisé la relation (3.2.11) pour la pression p, qui est également une constante :
p=10"1y.

A T’équilibre, on a donc les relations :

aUI[S, V, M]/dS = (dU/dS)vy = T[S, V, M], (4.1.10 S)
AUI[S, V, M]/aV = (dU/dV)su = —p|S, V, M], (4.1.10 V)
aUIS, V, M]/dM = (8U/OM)sy = u[S,V, M], (4.1.10 M)

ou S, V et M sont les variables naturelles de U ; T, —p et u sont les variables
conjuguées de S, V et M qui, a I’équilibre, sont des constantes.

La condition de Min ou Max sur la seconde variation de ® donne, d’apres (4.1.7

setm):
Pss  Psm [ Uss Usm > . =
(Spms (Pmm) N <um5 umm> < 0 51 T < 0 (4111)

Il en ressort, comme précédemment, que la capacité de chaleur a volume constant
Cy =Ve=Vu,(uss) ™' >0 (4.1.12)
est non négative, et que le module de compressibilité isentropique

as) = a9, V,M] = -V ~'0p[S,V, M]/oV

(4.1.13)
= $%Ugs + 28Mttgy, + M Upm z 0siT z 0

W(4.1.7 m) = (@) = B = po(&) qui justifie la notation employée en (3.3.3 m).
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a le signe de T'.

2. — Autres formes du principe d’équilibre par transformations de Legendre.

Les conditions sont réunies pour passer de la fonction U des trois variables
naturelles S, V et M a d’autres fonctions 'U, "U etc. dans lesquelles une ou plusieurs
transformations de Legendre substituent les variables conjuguées correspondantes,
respectivement T', p et u, qui ne sont d’ailleurs que des (produits de) multiplicateurs
de Lagrange.

La condition de minimum sur U avec contraintes sur les variables naturelles
se transforme alors en condition de minimum sur ‘U, "U, etc. avec contraintes sur
les nouvelles variables, aussi bien naturelles que conjuguées. Cele revient a dire que,
renong¢ant a la contrainte sur la variable naturelle, qui est extensive, on la transporte
sur la variable conjuguée, qui est intensive.

Il y a huit possibilités d’échanger les trois couples (8 = 2%), qu’on peut arranger
selon une structure de treillis de Boole.

"U[T, p, ]

G[T,p, M| "U[S, P, 1]

(4.1.14)

F[T,V, M] U8, V, ]

U[S,V, M]

De ces huit possibilités, cinq seulement sont retenues dans la pratique. Le potentiel
UI[T,V, pu] joue un role en thermodynamique statistique (T.S.). Les quatre autres
constituent les quatre potentiels thermodynamiques habituels sont :

a) I’énergie interne U[S,V, M| ;
b) I'énergie libre F[T',V, M]; F est mis pour « Freie Energie » (on évitera la confu-
sion avec le méme symbole F' utilisé pour la fonction extensive en général) ;

c¢) I'enthalpie W[S,p, M]; W est mis pour « Warmefunktion ». En grec, le mot
évbadmety signifie réchauffer ;

d) I'enthalpie libre G[T, p, M| ou potentiel de Gibbs.

Dans ces quatre cas, on cherche le minimum d’une fonctionnelle soumise a trois
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contraintes, que les conditions d’équilibre transforment en une fonction d’état de
trois variables. Pour préciser :
Min g >
2) Uls()m()] = o ST 2 0
avec les conditions d’équilibre : S =S5', V=V’ M = M’

— UIS,V, MJ;
b) FIT,m()] =\ siT 2 0
obtenue de U[...] par transformation de Legendre

F[..]=U[.]+97'S..]=U-T9)]..]

avec les conditions d’équilibre : T' = cte, c’est-a-dire contact avec un réservoir
de chaleur, V =V', M = M’

— F[T,V,M];
Mi .
) Wis(),pym()] =M g7 >
obtenue de U[...] par transformation de Legendre
W..]=U[l.]=9W[..]=U+pV)[..]

avec les conditions d’équilibre : p = cte, c¢’est-a-dire contact avec un réservoir de
travail, S =S5', M = M’

= W[S,p, M];
d) GIT,p,m()] = ppoy SiT 2 0
obtenue de U[...] par double transformation de Legendre
Gl..]=U[L.]+97'S[.] =9 9V[..]
=U-TS+pV)[..]
=(W-=-T9)[...]=(F +pV)|..]

avec les conditions d’équilibre T' = cte et p = cte, c’est-a-dire contact avec un
réservoir de chaleur et de travail, M = M’.

= G[T,p, M].

On remarque que les passages de a) a b) et de ¢) a d), qui se traduisent par
I’adjonction de I'adjectif « libre », diminuent de 2 a 1 le nombre de fonctions dont
dépend la fonctionnelle densité.

On remarque aussi la facon de passer de la fonctionnelle a la fonction d’état.
Jusqu’ici, pour des fonctionnelles extensives F', nous avons introduit f = dF /dV
comme la densité de F' ([f] = [F] ecm~9). Nous rencontrerons par la suite f = dF/dM
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comme la valeur spécifique de F ([f] = [F] gr™!) ou f = dF/dN comme valeur
molaire de F ([f] = [F] mole™ '), N étant le nombre de moles (I'utilisation du méme
symbole f ne préte pas a confusion). On se trouve donc devant deux fagon d’obtenir

la fonction d’état a partir de la fonctionnelle, a savoir :
= Vu[S/V,M/V] = Mu[S/M,V/M],

]
F[T,V,M} = VT, M/V] = MfIT.V/M], (4.1.15)
]

La derniére ligne exprime le théoreme de Gibbs (voir ci-dessous).

3. — Deuxiéme forme du principe d’équilibre : énergie libre ' .

Cette forme apparait dans le cas suivant. On met en contact le systeme X avec
un réservoir de chaleur £, de température T0. A D'équilibre, 1'état de ¥ est
donc conditionné par cette température. La fonctionnelle ®[...] dont on cherche
I'extremum va donc dépendre des variables T', V, M : I’expression (4.1.4) se récrit :

[T, m()] = F — BM — AV =12 siT 2 0. (4.1.16)
Nous avons donc posé
F=U4+971's, —o91=T10, (4.1.17)

Mais & I'équilibre T(® = T : la température du systéme est celle du réservoir. En
effet, par transformation de Legendre de la fonction d’état U[S,V, M], on obtient F
comme fonction d’état :

F[T,V,M] = U|S[T,V,M],V,M] — (8U/dS)yuS[T,V, M]

(4.1.18)
=(U-T9)[T,V, M].
Par identification avec (4.1.17), on trouve, pour I’équilibre,
T=—9!'=7Y (4.1.19)

Ainsi, T, V, M sont les variables naturelles de F', tandis que —S, p, p en sont les
variables conjuguées. Nous pouvons utiliser (4.1.9) pour obtenir immédiatement la
premiere variation de F

OF =0U — §(TS) = —S0T — poV + pué M (4.1.20)

dont on tire les relations analogues a (4.1.10) :
OF[T,V,M]/0T = (OF/0T)ym = —S[T,V, M], (4.1.217)
OF[T,V,M]/0V = (0F/OV )ryn = —p|T,V, M], (4.1.21V)
OF(T,V, M]/OM = (OF /oM )py = [T, V, M]. (4.1.21 M)
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En raisonnant pour F', comme on I’a fait pour U, sur la stationnarité de la fonction-
nelle ®[.. ], on déduit que, comme p = 3, m[T, M/V] = M/V et f[T,m] sont des
constantes, et F[T,V, M] est la fonction d’état :

F[T,V,M] =V f[T,M/V]. (4.1.22)
On tire de 1a une expression de p compatible avec (3.2.11) :
—p=f—mfn. (4.1.23)

Ainsi, a I’équilibre, les trois variables conjuguées sont des constantes. De la condition
de Min ou Max pour @, on tire

Prmm = fum = 0siT Z 0, (4.1.24)

condition qui permet d’affirmer que le module élastique de compressibilité thermique
acry a le signe de 1" :

aery = am[T,V, M] = =V ~'0p[T,V, M]/dV

4.1.25)

La signification de 1'énergie libre est la suivante : a T" et M constantes, (4.1.20)
donne

OF = —pdV = 0.A, (4.1.26)

égalité uniquement valable que pour une transformation réversible. En effet, le
deuxieme principe, dans le cas ou nous nous sommes placés, nous livre 'inégalité

J
© pour 7' > 0 et ot > 0. (4.1.27)

(552m

D’autre part, le premier principe 0H = 6Q) + dA, a I'équilibre, se réduit a U =
0Q) + 0.A. Par conséquent,

oU — A —T©6S <0 pour T > 0 et 6t > 0. (4.1.28)
Mais quand 1’équilibre est atteint, 7= T(®. Ainsi, & T donné :
—SA < —86(U —TS) = —6F. (4.1.29)

Le travail récupérable —0.A ne peut dépasser la diminution d’énergie libre —0F du
systeme. Il lui est au mieux égal dans le cas d'une transformation réversible et alors

—0A = —)F.
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4. — Troisieme forme du principe d’équilibre : enthalpie 1V

On utilise cette forme lorsque I'on met le systeme Y en contact avec un réservoir
de travail, qui exerce une pression constante p(® sur tout ou une partie (par exemple
piston) de l'enceinte C(y) = 0.

Le raisonnement étant similaire a celui des sections 1 et 3, nous nous contenterons
de le donner dans ses lignes générales.

Nous écrivons la fonctionnelle comme

Min

Op,s(),m( )] =W +67'S M=y siT Z 0. (4.1.30)
Nous interprétons cette condition comme
_Min .5 > avec les contrainte
Wip,s(),m()] = Nax 1T 2 0 s S ot M — M (4.1.31)

Une comparaison entre (4.1.4) et (4.1.30) montre que nous avons posé
W=U—-~V avec —v =pO. (4.1.32)
Comme fonction d’état, nous obtenons W par transformation de Legendre :

WIS, p, M| = U[S,V[S,p, M], M] — (OU/OV )sm V[S, p, M]

(4.1.33)
= (U+pV)[S,p, M].
Nous obtenons W directement de U donnée en (4.1.9) :
W =6(U+pV) =T6S+ Vop+ udM. (4.1.34)

Les variables naturelles sont donc S, p, M et les variables conjuguées T, V et u,
avec les relations

OW|[S,p, M]/0S = (0W/3S),m = T[S, p, M], (4.1.35 S)
OW S, p, M]/0p = (OW/0p)sm = VS, p, M|, (4.1.35 p)
OW IS, p, M|/OM = (0W/OM)s, = pu[S, p, M]. (4.1.35 M)

A Téquilibre, les trois variables conjuguées sont des constantes.

D’abord, la variation de (4.1.32) impose, avec §S = 0M = 0 que

p(&) = —y = p0. (4.1.36)

La pression p dans le systéme est égale a celle du réservoir de travail p'®.

®)La convention généralement adoptée est de désigner ’enthalpie par H. Comme pour nous,
cette lettre note ’énergie, nous conservons l’ancienne notation W des ouvrages allemands.
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Ensuite, les conditions de Min ou de Max de la fonctionnelle donnent

s=w, +9 20 4.1.37 s
@ ,

doit

Mais wy = us = T(T) et wy, = Uy = p(L).

Ainsi T et u sont des constantes, ce qui implique & nouveau que s[T', u] et m[T, p]
sont également des constantes.

Quant a V', étant une variable extensive, elle a forcément une valeur d’équilibre
V’. On peut donc écrire s = S/V et m = M/V, et obtenir la fonction d’état sous la
forme

WIS, p, M| = V'w[S/V', p, M/V"]. (4.1.38)

On voit que la densité w ne présente pas grand intérét, puisque V' n’est pas variable
naturelle, mais s’obtient comme V' = V'[S, p, M]. En revanche la valeur spécifique
w[S/M,p], elle aussi constante dans 1’équilibre, prend tout son sens. On écrira de
préférence :

WS, p, M] = Mw[S/M, p]. (4.1.39)

5. — Quatriéme forme du principe d’équilibre :
potentiel de Gibbs ou enthalpie libre G.

Le systeme X est en contact a la fois avec un réservoir de chaleur, de température

TO) et avec un réservoir de travail, de pression (constante) p©.

Par le méme raisonnement que précédemment, nous écrivons notre fonctionnelle
sous la forme

Min .
O[T, p,m()] =G~ M =y siT 20, (4.1.40)
condition que nous interprétons comme
G[T,p,m()] = Mlar)l( siT z 0, avec la contrainte M = M’. (4.1.41)

La comparaison avec (4.1.4) montre que nous avons posé

G=U+9'S—yV=F—-—q4V =W 4+97'S
(4.1.42)
avec —9 =T et —r =pO0,

Nous obtiendrons la fonction d’état G par transformation de Legendre a partir de
U (double), de F' ou de W, au choix.

Si nous partons de I’énergie libre F', nous avons alors la condition d’équilibre
T(%) = =9~ = T ; si nous choisissons I'enthalpie W, alors ce sera la condition
d’équilibre p(z) = —y = p©.

Par conséquent, par transformation de Legendre,

G|T,p, M| = F[T,VI[T,p, M|, M| + pV [T, p, M|

(4.1.43)
= W[S[T,p, M]vpv M] — TS[T,p, M]
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avec comme différentielle
0G = —=S0T + Vop+ noM. (4.1.44)

T, p et M sont les trois variables naturelles de G; —S, V et u en sont les trois
variables conjuguées, avec les relations :

OG[T, p, M]/dT = (0G/OT) 0 = —S[T, p, M], (4.1.45 T)
OG[T,p, M]/0p = (0G/0p)ry = V[T, p, M], (4.1.45 p)
OG[T,p, M]/OM = (0G/OM)r, = u[T,p, M]. (4.1.45 M)

A T’équilibre, les trois variables conjuguées sont des constantes. Pour S et V', variables
extensives, il n’y a rien a démontrer. Pour pu, on utilise la premiere variation de la
fonctionnelle :

s — — doi
Om[T, 0, M(Z)] = gm(T) — B = un (&) — B 0. (4.1.46)
Par conséquent m|[T, p] est encore une constante, qu’on peut écrire m = M/V' V'

étant la valeur du volume a I’équilibre. Alors g[T, p, m( )] est une constante, et la
fonction d’état s’écrit a nouveau

G[T,p, M] = V'g[T,p, M/V"]. (4.1.47)

Mais pour l'enthalpie W, on préférera la valeur spécifique g[T, p], elle aussi constante
a I’équilibre, et on écrira

GIT, p, M) = Mg[T, p). (4.1.48)
On observe que le potentiel spécifique g ne dépend que des deux variables intensives
T et p. Ce fait exprime le théoréeme de Gibbs.

En effet, G étant extensive, si on augmente la masse M d’un facteur multiplicatif
A, on peut écrire :

G[T,p, A\ M| = \G[T,p, M]. (4.1.49)
Différentions les deux membres par rapport a A. Il vient
OG[T, p, \M]
——————— M = u[T,p, \M|M = G[T,p, M]. 4.1.50
D) pulT, p, AM] [T, p, M] ( )

Le dernier membre de (4.1.50) ne dépend pas de A. Il doit donc en étre de méme
pour le premier, si bien que

ulT, p, M] = [T, p] = g[T, p. (4.1.51)

Le potentiel spécifique g est égal au potentiel chimique p (qui est, lui, une grandeur
intensive) et ne dépend que des variables intensives T et p (si on choisit les variables
naturelles T, p et M de G) :

G[T,p, M| = Mu[T,p] = Mg[T, p). (4.1.52)



Thermostatique du fluide a une seule composante chimique 113

4.2 Les relations de Maxwell

Les relations de Maxwell expriment le fait que les deuxiemes dérivées partielles
mixte des potentiels sont symétriques :

aa;g‘/ S, V, M] = —aT[%“//’ M) _ _oplS, v, M] ag M (4.2.1 V)
aangv [T, V, M] = —85[2"‘//’ M) _ —ap[Té;/j M (4.2.1 F)
ggg;[s,p, M) = aT[Sa’;)’ M) _ W[g’g’ M] (4.2.1 W)
;;—;D[T,p, M] = —85[25’ M) _ aV[Ta’;” M| (421 G)

Comme dans la plupart des applications nous ne nous occupons pas de M (ou
de N), nous avons avantage a écrire ces relations pour les potentiels spécifiques

uls,v], f[T,v], w[s,p|] et g[T,p] = p[T,p], dans lesquels 5 et v sont les densités
spécifiques de S et de V' :
_ _ _dV _1
S=MsetV =Mov (avecv:d—M:m > 0 pour 7' > +0).

Nous avons alors affaire a des relations entre 3 variables seulement, par exemple u, 5
et v,ou f, T et v, etc.

Les premieres dérivées sont alors :

us|8,v] = (0u/0s); = T8, v], (4.2.2 5)
u3(8, ] = (0u/0v)s = —pls, ), (4.2.2 v)
fr[T, 9] = (80f/0T)y = —5[T, v), (423 7)
fﬂ[T7 @] = (8]?/86)T = _p[T7 @]7 (423 6)
ws[s, p] = (0w/0s), = T'[3, pl, (4.2.4 3)
Wy[3, p) = (0w/0p)s = v[3, p, (4.2.4 p)
gr[T,p] = (09/9T), = =3[ p), (4.25T)
9p[T',p] = (09/0p)r = [T, p]. (4.25 p)

De la, on obtient les 4 relations de Maxwell :

0*u/0500 = (0T /0v)s = —(Op/05)s, (4.2.6 50)
2 f /0T ov = —(95/00)r = —(0p/0T)s, (4.2.6 T?)
0*w/050p = (0T /dp)s = (0v/05),, (4.2.6 3p)
0%g/0Top = —(05/0p)r = (0v/9T),. (4.2.6 Tp)

Ce sont des relations entre 4 variables, 2 intensives 1" et p, et 2 spécifiques 5 et .
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4.3 Equilibre entre différentes phases - Regle de phases

Il se peut que I'unique substance A soit composée de plusieurs phases. Par phase,
il faut entendre un sous-ensemble de ¥, dont les potentiels thermodynamiques sont
des fonctions d’état C'*° différentes de celles des autres phases. Nous désignerons les

différentes phases par des lettres grecques minuscules «, (3, . .. et leur nombre par ¢.
Ainsi o, 3,...=1,2,...,¢.

Lorsque le systeme est a ’équilibre, il est évident que chacune des phases doit
également se trouver en état d’équilibre. Nous allons successivement reprendre les 4
formes de potentiels.

1. — FEnergie interne U.

Nous avons la condition

o (03 (6% (6% M‘ .
U=) Us*V* M=y, siT 20 (4.3.1)
avec les 3 contraintes (grandeurs extensives)
S=)8"=8, V=) V*=V', M=) M*=M. (4.3.2)

Par conséquent, nous n’avons que 3(¢ — 1) variables libres. Nous éliminons en effet
85?, §V? et 6M? par

08% ==Y 68%, VP == "16V*, sM?=-> 'sM*, (4.3.3)

«

ott le symbole >/ est mis pour Ei;}

La premiere variation de U nous donne :

OU =3 /(1% =T9) 58 = 3" /(p* = p?) OV (= p?) OM 20, (4.3.4)

o «

ce qui conduit aux 3(¢ — 1) équations
T¢=T°=T, p*=p®=p, p*=p®=p. (4.3.5)
1l y a égalité des températures T, des pressions p* et des potentiels u dans les ¢

phases. Le fait que ces grandeurs, en cas de contact, prennent méme valeur (méme
intensité), justifie qu’on les appelle grandeurs intensives.
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2. — FEnergie libre F.
Nous avons la condition
o o o M‘ o
F=) FT,V5 M =y siT 20 (4.3.6)
avec les contraintes
T=T,V=) V=V, M=> M*=M. (4.3.7)

Il n’y a plus que 2(¢ — 1) variables libres, puisque les températures sont déja sup-
posées égales. La variation de F

OF = =% /(0" = p?) 6V + 3" (u* — p?) M= 20 (4.3.8)
conduit donc aux mémes relations que (4.3.5).

3. — FEnthalpie W.

Il est évident qu’on obtiendra encore les mémes résultats, mais dans ce cas, c’est
la pression qui est donnée, ce qui s’écrit en formules :

(0% (0% (0% M' :
W=> Ws%p, M =y ST 20, (4.3.9)
S:ZSa:S'; p=7; M:ZMO‘:M’, (4.3.10)
OW = =3 (T = T%) 58 + Y "(u* — u®) sM* = 0. (4.3.11)
3. — Enthalpie libre G - Reégle de phases.

Comme G est extensive, le nombre de variables arbitraires n’est plus que de
¢ — 1, ce qui conduit a la regle des phases. En effet :

G =3 GT,p, M%) =Y MgIT,p] = 1 siT 2 0 (4.3.12)
avec les contraintes

T=T,p=p, M=> M*=M. (4.3.13)

Par conséquent, la variation de G est

0G = (u* — pu®) 6M* = '(g* — g°) 6M* = 0. (4.3.14)

(e «



116 Equilibre entre différentes phases - Regle de phases

Nous nous trouvons donc devant ¢ — 1 équations

p®[T,p] = p[T, p] (4.3.15)

qui ne contiennent que les deux variables intensives T et p. Comme il faut satisfaire
a la condition que le nombre d’équations ne peut dépasser celui des variables, on
obtient la régle des phases de Gibbs pour une seule composantes A

$—1<2 ou ¢ <S3. (4.3.16)

Il y a donc trois cas a considérer :

a) = 1. Dans une région déterminée du plan T'p, il existe une seule phase «.
Comme G doit étre minimum, la phase réalisée est donc la phase dont le potentiel
chimique est le plus bas (pour 7' > 0) :

p[T, p] < pP[T,p] et p[T,p] pour T > 0. (4.3.17)
b) ¢ = 2. Deux phases « et (3 coexistent. L’équilibre de G exige donc que
p(T, p] = 4P [T,p] < u?[T,p] pour T > 0. (4.3.18)
Cette égalité donne lieu a une courbe de coexistence : dans le diagramme T'p
p=p(T). (4.3.19)

Les trois courbes u® = p?, u® = p et p® = ©” coincide en un point unique, le
point triple (T}, py.), voir ¢) ci-aprés. Dans le cas de I’eau, on désigne les trois
phases «, [ et v par s (pour solide ), ¢ (pour liquide) et g (pour gaseuze) et
on parle de courbe de fusion, de sublimation et de vaporisation.

c) ¢ = 3. Coexistence des trois phases «, 3 et -, en un seul point du diagramme
Tp, qui est univoquement déterminé. On 'appelle le point triple (Ty., pw),
cf. figure 4.3.1.

(u* =’ = )T, pl. (4.3.20)

La valeur de T}, pour une substance déterminée A fixe I’échelle des températures.
La dixieme Conférence des Poids et Mesures (octobre 1954) a fixé comme standard

la température du point triple de l'eau naturelle (mélange isotopique) & Ty cqn =
273,16 degré Kelvin.

Pour une méme substance, il peut y avoir plusieurs phases solides (cristaux
différents ou état allotropiques) ou plusieurs phases liquides (cas de I'hélium), ce qui
conduit a plusieurs points triples. Mais il n’y a qu'une seule phase gazeuse.

Enfin, sous certaines conditions, la courbe de coexistence de deux phases a et
0 peut se prolonger au-dela du point triple, dans la région ou ~ est la phase stable.
On parle alors d’équilibre labile (par exemple surfusion).

) Pour beaucoup de cas, le solide, soumis & une pression constante p’, peut, en cas d’équilibre,
étre traité comme un fluide.
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liquide
pt < pf,

DPtr

Ty T

Fig. 4.3.1 Point triple (T}, pir) ; courbes de coexistence p = p[T'] entre deux
des trois phases d’un corps typique et leurs prolongements en équilibre labile.

4.4 Courbe de coexistence entre deux phases
et chaleur de transition

Récrivant g*[T, p] au lieu de p®[T, p|, nous différentions la relation d’équilibre
(4.3.20), compte tenu des relations (4.2.5 T et p)

((9g°/0T), — (05°/0T),) dT + (95" /0p)r — (05" /Op)r) dp

= — (5% — [T, p] dT + (v* — ¥°)[T, p] dp = 0, (4.4.1)

soit encore ) ( . )
dp(T sF — 5%
= T, pl. 4.4.2
C’est I'équation de Clapeyron. En effet, nous pouvons faire apparaitre la chaleur de
transition g%~®, définie comme la chaleur 6Q = §Q échangée quand la quantité de

substance

SMP = —sM*° (4.4.3)
passe de la phase a a la phase § réversiblement.

Du principe d’équilibre pour G, on tire
0=g*—g° = (@* - T5*) — (@° — T5"), (4.4.4)

soit
@’ —a* = T(3° — 5%) = . (4.4.5)

En effet, d'une part a p = p’ on a, en tenant compte de (4.4.3),
6Q = 0W = §(Mw™ + MPwP) = sMP (0’ — w*) = SMPgP—* (4.4.6)
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puisque les w® et les §* sont, a I’équilibre, des constantes. D’autre part, a T' = T,
on obtient

6Q =TS = TS(M*5* + MP5°) = T6MP(5° — 53%) = ¢’ —. (4.4.7)

On remarquera que, par la définition donnée, les chaleurs de transition entre trois
phases obéissent a la relation

(= 7P+ (jﬁga)[T, pl. (4.4.8)
On peut donc récrire (4.4.2) sous la forme
dp(T) ¢’

T~ T(or —goy Lo (4.4.9)

Cette équation peut étre intégrée, si la chaleur de transformation %~ et les deux
volumes spécifiques 7* et 7 sont connus en fonction de 7" et de p. Comme c’est une
équation différentielle du premier ordre, p[T] dépend donc d’une constante d’inté-
gration qui est liée a la constante chimique i, de la substance A considérée.

Pour les trois phases s, £ et g, on trouve en général les pentes indiquées sur la
figure 4.3.1, du moment que §?* (chaleur de fusion), ¢ * (chaleur de sublimation)
et g@* (chaleur de vaporisation) sont toutes positives et que, d’autre part, v9 >
vt > s,

Il nous reste a déterminer de quel coté de la courbe p = p[T| se trouve la partie
stable. Pour ceci, évaluons g* — g® pour un point avoisinant, gardant p = constante
et faisant varier T positivement : 67" > 0. On obtient :

(9 = g°)T + 6T, p(T)]
= (g% — ")[T,p(T)] + ((05° /3T, — (95 /0T),) [T, p(T)] 6T + ...
=0— (5° = 3)[T,p(T)) 6T + ...
= - T'@ T, p(T)) 6T +... < 0si @, T > 0.
(4.4.10)

Par conséquent, « est la phase stable a droite (pour 67" > 0 ) de p = p(T'), dans les
conditions précisées. Cela détermine les 3 régions de la figure 4.3.1.

4.5 Relation entre les capacités de chaleur Cy et C),

Nous ne considérerons ici qu’une seule phase en équilibre. Gardant M = cte,
deux possibilités se présentent :

1. — Le systeme X est enfermé dans un volume donné V' = V’. Alors la chaleur
réversible dQ) = 0Q) fournie a Y équivaut a une augmentation 0U de son énergie
interne U :

8Q = 6U|[S,V, M] =TS = T(9S[S,V, M]/0T)dT = CydT,

(4.5.1)
Cy = T(8S[T,V, M]/dT) > 0.
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Cy est une grandeur extensive, comme U ou S. C’est la capacité de chaleur a
volume constant. V et M étant des variables géométriques, on peut appliquer le ré-
sultat obtenu en (3.3.14) : la capacité de chaleur a variables géométriques constantes
est non négative.

L’extensivité de Cy, s’exprime aussi bien en volume qu’en masse :
Cy =Ve= Mc; >0, (4.5.2)
ou ¢ est aussi la chaleur spécifique

¢; =T(05/0T); >0, 5=35[T,7]. (4.5.3)

2. — L’autre possibilité se présente quand X est enfermé a pression donnée p = P
Alors la chaleur réversible 0¢) = 0@ fournie a ¥ équivaut a une augmentation oW
de son enthalpie W :

6Q = SW|[S,p, M] =TS = T(dS|T,p, M]/0T) 6T = C, IT, B

ou C), est la capacité de chaleur a pression constante. Nous allons voir qu’elle est
également non négative, toujours plus grande que Cy > 0. Elle est extensive, mais
évidemment seulement selon M. On passe donc a la chaleur spécifique :

C, = Mé, >0, (£55)
¢, = T(05/9T), >0, 5=5[T,p). o

Procédons maintenant au calcul de la différence entre les deux chaleurs spécifiques
¢p — Cy et montrons que cette différence

¢y — ¢y =T ((05/0T), — (05/0T)5) (4.5.6)
n’est jamais négative. Vu la relation
(05/0T), = (05/9T); + (05/90) (80 /T),, (4.5.7)
elle prend la forme
¢y — ¢z = 1(0v/0T), (05/00)r = T(0v/0T), (Op/0T)s, (4.5.8)

ou on a utilisé la relation de Maxwell (4.2.6 T'%). Utilisons la relation entre dérivées
partielles de 3 variables © = z[y, z], y = y[z,z] et z = z[z,y]. On a d’abord, en
posant dx =0

dzly, 2] = (0x/0y), 0y + (0x/0z),0z = 0, (4.5.9)

et ensuite, la relation

(0z/0y), = —(0x/0%), (02/0y)ss=0 = —(0x/0%), (02/0Y). (4.5.10)
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Posant © = p, T = y et v = z, la regle (4.5.10), appliquée a (9p/0T); dans
(4.5.8), donne a la différence ¢, — ¢; la forme non négative

& — & = —T(0p/00)r (00/0T)% > 0 (4.5.11)
car (Op/0v)pr = —va(r)[s, m] est la pente de l'isotherme dans le diagramme op, et

est, d’apres (4.1.29), de signe opposé a T

Le rapport des chaleurs spécifiques

C, ¢ (0s/07),

G = %= @en), V.. ] >1 (4.5.12)

est donc une fonction d’état de deux variables seulement et est un nombre supérieur
ou égal a 1.

4.6 Relation entre les modules élastiques
de compressibilité ar) et a(g)

D’apres (4.1.13) et (4.1.24), le rapport
acs)/a(T) = (Op/0v)s/(9p/dv)r = 0 (4.6.1)

est un nombre positif. Nous allons démontrer qu'il est égal a v = ¢,/¢; et donc > 1.
Utilisant (4.5.10) pour p, v, set p, v, T respectivement, et la relation, valable pour
3 variables x = z[y, 2]

(0x/0y). = (0y/0x); ", (4.6.2)

nous donnons a (4.6.1) la forme

a) _ (95/0v), (00/0T), _ (95/9T), &
ary  (05/0p)y (Op/OT)y  (05/0T)y G

=q[.]>1 (4.6.3)

Pour la deuxiéme équation, on a utilisé la relation suivante valable pour quatre
variables z, y, z, u, chacune n’étant fonction que de deuz variables : x = x|y, z] ou
= z[u, 2], u = uly, 2] :

Oxly, 2]/0y = (0x[u, z]/Ou) (July, 2]/y)

(4.6.4)
= (0/0y). = (0x/0u). (Ou/0y).

en prenant s, T, p, v au numérateur et s, T, v, p au dénominateur.

L’équation (4.6.3) montre donc que, pour T' > 0, les isentropes p = p[s, 0] sont
plus fortement inclinées que les isothermes (figure 4.7.1).
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4.7 Thermomeétrie

T'=+40
4

Fig. 4.7.1 Les isentropes S(© < §' < §” < §"” < ... en trait continu et les
isothermes +0 < TW < T?) <« TG) < | en traitillé pour M = cte.
La surface O représente le travail —A > 0 retiré de X par un cycle de Carnot.
L’isotherme T = +0 coincide avec l'isentrope & entropie minimale S > —o0o
(troisiéme principe).

Le thermometre idéal, pour mesurer une température absolue, consiste a effec-
tuer un cycle de Carnot (réversible), ce qui donne :

A= %pdv = Q(Z) + Q(l) — T(Z)(SII _ S/) + T(l)(S/ _ SH)

= (TM — T@) (8" — 5" = 7QW, (4.7.1)

7=1-— (T(Q)/T(l)).

Le standard ancien revenait a fixer 'unité de température par la convention (T¢"“ —
T9) .0 = 100° centigrades & p = 1 atm, puis & mesurer 7 pour fixer 79¢. Le
standard nouveau fixe la point triple de I'eau a Ty, ¢, = 273, 1600 degré Kelvin.

Cependant, le cycle de Carnot ne peut étre réalisé avec une précision suffisante.
En revanche, les isothermes peuvent toujours étre réalisées avec une grande préci-
sion, si on les suit sur une petite longueur. On les repere alors par un parametre,
une échelle arbitraire, dite thermometre, qui est une fonction ¥ = ¥(7") monotone
croissante de la température 7.

9=9(T) et o(T)=dd(T)/dT > 0. (4.7.2)

Cest la température empirique du thermométre réalisé par un fluide.

Nous allons montrer que la connaissance du coefficient de pression (0p/09);
(p = p[¥,0]) et du rapport (§g/60)y entre la chaleur §g fournie & ¥ et sa variation
0v, considérés les deux comme fonctions de ¢ et de v, déterminent la dépendance
dY(T)/dT = 9'(T). Pour I’établir, nous écrivons

dulv, v] = T(05/9T); 0T + ((05/0v)r — p) 60, (4.7.3)
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d’ou on obtient, en utilisant les relations de Maxwell (4.2.6 T'0)

(0u/0v)y = (T(05/90)r — p)[V, v]

i (4.7.4)
= (T(dp/d9); ¥'(T) — p)[¥, ).

On peut en éliminer ¥'(T") en se rappelant que, sur l'isotherme 6 (ou T') = cte, le
premier principe, par unité de substance, détermine le rapport (6G/0v)y[0, v] par

6q = 6ul¥,v] — 6 A = ((8u/0v)s + p)[¥, ) 60. (4.7.5)
Le résultat peut étre écrit dans la formule différentielle

(Op/09); [V, V]
(04/0v)y [0, 7]

ar _

T d(logT) =

do. (4.7.6)

Le rapport du troisieme membre est indépendant de o, vu la définition (4.7.2). On
peut donc intégrer numériquement, si les deux coefficients ont été mesurés :

108(T  Trear) = | d0 %[ﬁ] (4.7.7)

ﬁtr, eau

pour obtenir 7" = T[] a partir du nouveau standard.

Il est remarquable que, vu ’apparition du logarithme, on ne peut calibrer qu’une
échelle, soit T > 0, soit T" < 0. Ceci est aussi vrai pour la méthode du cycle de
Carnot, vu qu’aucun cycle de ce genre ne peut fonctionner entre deux températures
absolues de signe opposé.

4.8 Gaz parfait

Dans la région du diagramme vp, pour laquelle p — 0, tous les gaz, quelle que
soit la substance A, tendent vers I’approximation suivante, qui définit le gaz parfait :

pv =04(T) et u=u[da(T)] (4.8.1)

ou vy = J4(T) est la fonction monotone de la température absolue de la section pré-
cédente. Pour obtenir une formule valable universellement, c¢’est-a-dire sans qu’il soit
nécessaire de spécifier la substance A, il est préférable d’écrire la premiere relation
de (4.8.1) sous la forme

pV = M A7 9(T). (4.8.2)

Dans cette équation, ¥(7T") est le méme pour toute substance A, B, ... Il suffit des
lors de prendre pour unité de masse non le gramme mais la mole de la substance A.
A est donc la masse inerte de la mole de A, définie par C'? = 12 gr (depuis 1961,
C'? a remplacé O comme standard).
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Introduisant alors les rapports
N=MA"Y; n@t)=m(Ft) A" (4.8.3)

nous définissons le nombre de moles A dans M, ainsi que la densité correspondante.
Nous pouvons reprendre tout ce qui précede avec n(Z,t) au lieu de m(Z,t). En
particulier, la grandeur spécifique de F, soit F' = M f, est remplacée désormais par
la grandeur molaire de F, soit F = N f. On prendra soin de retenir le changement
de signification que représente la barre placée sur la densité.

Nous arrivons de la sorte a la définition suivante du gaz parfait :
gaz parfait d la limitep — 0 : pV = NY(T) et U[I(T)] = Nu[d(T)]. (4.8.4)
De ces relations suit immeédiatement une relation pour ’enthalpie :
W =U+pV = N(@[¥(T)|+HNT)) = W[T)]. (4.8.5)

Pour un gaz parfait, [’énergie interne U et [’enthalpie W ne dépendent que de la
température absolue T'.

Nous pouvons alors procéder aux calculs qui nous permettrons d’utiliser (4.7.6)
pour évaluer ¥ = (7).

1) Sur lisotherme ¥ (ou T') = cte, étant donné que U = Nu[d], on a
SU=0=06Q+ A= 6Q=-5A=pdsV = (6Q/5V)s = p. (4.8.6)

2) Pour le numérateur de (4.7.6) on a

(Op/0d)y = NV~ L. (4.8.7)
Par conséquent
dT (0p/0v)y N dv
e = — = — 4 o
T (6035 [0]dv pvdﬁ 3 (4.8.8)
et donc
9 =7T. (4.8.9)

Pour le standard O' = 16 gr, T = (8,31696 + 0,0003) erg mole™! degré=! (habi-
tuellement notée R).

Les relations du gaz parfait sont donc :
pv=7T et u=alT]. (4.8.10)

Un autre phénomene des gaz parfaits, qui n’est d’ailleurs réalisé que pour les basses
températures, est I'indépendance des chaleurs spécifiques ou molaires par rapport a
la température 7.
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On a en effet . -
U w
w=(57), + &= (8_T>p’

__ Ow-1) Oy .,
Cp — C5 = 5T — o7 =9 =r.

(Le méme résultat est obtenu en calculant la formule (4.5.11).)

(4.8.11)

La thermodynamique statistique (T.S.) montre que pour un gaz parfait on a les
résultats suivant :

Type de gaz parfait Cy v = C5/C

monoatomique : 3 degrés de liberté | (3/2)7 5/3

diatomique : 5 degrés de liberté (5/2)7 7/5

polyatomique : 6 degrés de liberté 3r 8/6

On peut encore calculer les isentropes :

A
(Op/0v)s = v(Op/0v)r = —72—2 =— g,

dp dv (4.8.12)

— ===
P v

pv” = const (3).

On évaluera const (5) plus tard.

De méme, on obtient pour le module de compressibilité isotherme a(r)

T

_Op|T, 7] 0 (T _
am = 0L =~ (=) = = = p[1,7) (48.13)
On obtient a(g) par
asy = Ya(T) > A(T)- (4814)

Nous évaluerons enfin, pour application ultérieure, les potentiels molaires w9 et g9
du gaz parfait en fonction de T et p.

Pour I’enthalpie molaire w?(7T'), on a la dépendance en 7" seulement, selon (4.8.4).

Vu (4.8.11), dans la région ou ¢, est une constante, on obtient
0[T] = Wiy + &7, (4.8.15)
ou zD‘E’O) est une constante d’intégration, qui n’est pas 'enthalpie a 7' = 0, mais une

valeur extrapolée pour la région ol ¢, n’est plus une constante (ordonnée de la droite

(4.8.15) 4 T = 0).
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Pour I'enthalpie libre molaire g9[T), p], il faut passer par la détermination de ’en-
tropie molaire 59T, p]. La relation de Maxwell (4.2.6 T'p), appliquée au gaz parfait,
donne

0s[T,p] _ 99[T,p] _ _]ij = [T, p] = —7logp + @(T). (4.8.16)

dp oT

La constante d’intégration ¢(7'), dépendant de T seulement, peut étre déterminée
par recours a la chaleur molaire a p constant.

Dans la région ou ¢, reste une constante

ow|s,p| 9s|T os[T do(T
Somst = ,[T] = w(s,p| O5[T,p] _ 1, 05[T,p] _ o d(T)
05 orT oT ar (4.8.17)
= @(T) = ¢,log T + const'.
La nouvelle constante const’ est I'entropie pour T' =1 et p = 1 et est notée 57,,. Elle
dépend donc des unités choisies pour mesurer 1" et p, ainsi que de la nature de la
substance A. A nouveau, c’est une valeur extrapolée, et non 'entropie du gaz parfait
pour T' = 0, puisque a cette limite, le modele du gaz parfait cesse d’étre applicable
(dégénérescence du gaz).

En définitive, nous obtenons pour §9[7T", p|
ST, p] = +¢,log T — Flogp + gfl) T =1,p=1] (4.8.18)
et, pour [T, .
g°[T,pl = o[T] = T[T, p|
— @y +&T — T(¢log T - 7logp + 57, ) (4.8.19)

= wfo) + 7T logp — ¢,T'log T + (¢, — 5‘(71))T,

compte tenu de (4.8.11).

4.9 Le troisieme principe
et sa relation avec le deuxieéme principe

Nous allons examiner maintenant le comportement du réseau des isentropes et
des isothermes lorsqu’on approche la température absolue 1" = +0.

D’abord, que la température absolue T' = +0 constitue une limite infranchissable
pour un systéeme de masse positive découle directement du deuxieéme principe 2b),
du fait de I'inégalité

(mT~H(Z,t) >0, V(1) (4.9.1)
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Ensuite, la température absolue T' = 40 ne peut étre atteinte qu’asymptotiquement.
Nous savons en effet qu’elle constitue la borne inférieure des températures natu-
relles 7 = —o0 et que les températures absolues négatives sont plus chaudes que
les positives. Il faudrait donc un nombre infini d’opérations réversibles pour pouvoir
I’atteindre.

Dans un réseau d’isentropes/isothermes tel que celui de la figure 4.7.1 , la tem-
pérature T" = +0 constitue donc une borne inférieure de la famille des isothermes.
Mais qu’en est-il des isentropes au voisinage de cette isotherme limite? Nous al-
lons montrer que l'isotherme 7" = +0 se confond avec l'isentrope S° qui constitue
également une borne inférieure pour la famille de isentropes. Seulement, en phéno-
ménologie non relativiste, rien n’est capable de fixer la valeur de S°. Est-ce S = —o0
comme l'indique le modele du gaz parfait 7 L’expérience montre que, précisément, a
basse température, tous les corps s’écartent notablement de ce modele, soit qu’ils se
trouvent dans un état condensé, solide pour I'immensité des cas, liquide pour 1’hé-
lium II et III, ou encore a ’état de gaz dégénéré (statistiques quantiques). Comme
I'a vu Nernst, il faut l'introduction d’un aziome supplémentaire pour faire de S° une
borne inférieure finie (troisiéme principe). Comme en phénoménologie non relativiste
I’entropie, comme I’énergie, n’est définie qu’a une constante additive pres ', Planck
a complété cet axiome par une convention compatible avec la relation de Boltzmann
entre entropie et logarithme de la probabilité, en fixant cette borne inférieure finie,
physiquement inaccessible, & la valeur zéro : S = 0.

Ainsi :
0=25°<8< S (4.9.2)

Pour montrer que l'isotherme limite T = +0 et isentrope minimale S° sont
confondues, nous allons raisonner sur le rapport v des pentes des isentropes et des
isothermes, qui est également celui des chaleurs spécifiques a pression et a volume
constants, et celui des modules élastiques de compressibilité isentrope et isotherme.
Mais contrairement aux sections 4.5 a 4.8, nous éviterons de nous référer explicite-
ment & un diagramme (pv), puisque 'on sait que la représentation qu’il permet n’est
pas univoque (cas de I'eau et de I’hélium III, qui présentent un maximum de densité
dans la phase liquide, et qui passent de la phase liquide a la phase solide avec une
augmentation de volume).

D’une part, I'isentrope
p = p[s,v] = —9duls, v]/0v, (4.9.3)
d’autre part, 'isotherme

p = p|T,v] = —Of[T,v]/0v (4.9.4)

() La situation est différente en phénomenologie de la relativité restreinte. Aussi, dans cette théo-
rie, le troisieme principe peut s’exprimer comme cas particulier d’'une inégalité plus générale
obtenue directement & partir des deux premiers principes, voir Annexe B.
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s’obtiennent respectivement a partir des fonctions d’état @[3, 9] et f[T),v]. Le rapport
v de leurs pentes est une fonction d’état de p et de v :
opl5,0]/0v ¢,  as)

= )| = —— = = = > .J.

comme démontré précédemment.

Le point qui importe est que ce rapport reste défini quand on s’approche de
I'isotherme limite 7" = +0 et qu’il tend alors vers sa valeur limite 1. Ce point est
établi a condition de bien définir la notion de phase. Une phase est bien définie par
la différentiabilité de ses fonctions d’état, ces dernieres ayant des valeurs différentes
d’une phase a 'autre. En d’autres termes, une phase « se distingue d’une phase [ si
a“[..) £ 4. ], fol..] # FO[ . ], ete., avec a®, @, f, fP, etc. ... différentiables.
Cette condition de différentiabilité des fonctions d’état ne constitue d’ailleurs pas une
condition supplémentaire. Des le départ, en effet, on a supposé la C'*° différentiabilité
des fonctionnelles, qui donnent lieu aux fonctions d’état a 1’équilibre statique.

Ainsi, p[s, v] et p[T, ] sont I'une et 'autre différentiables dans la phase appro-
priée : solide, liquide ou gazeuse dégénérée, et le demeurent lorsqu’on approche de
T = +0. Leur rapport reste donc défini a cette température.

Mais I'inégalité v[p, v] > 1 implique que chaque isentrope coupe toutes les iso-
thermes. Les isentropes ne peuvent cependant couper l'isotherme 7" = +0, car elle
passeraient dans une région non physique. Elle ne peuvent non plus y avoir un point
d’arrét, a cause de la différentiabilité, ni un point de rebroussement, puisqu’il faut
que les rapports (Op/0v)s et (Op/0v)r restent négatifs. La seule solution est que
cette isotherme se confonde avec une isentrope enveloppe des autres, c’est-a-dire
une isentrope S° borne inférieure de sa famille.

On a donc la relation limite

Tlirﬁov[s,v] = %LHJ:OV[T7 7] =1. (4.9.6)

Comme nous 'avons dit, le troisiéme principe fixe alors cette isentrope limite a une
valeur finie
Nernst : S°> —oo, (4.9.7)

a laquelle Planck donne la valeur 0 pour toute substance pure
Planck : S°=0. (4.9.10)

Comme toutes les transformations a T' = 40 sont alors réversibles, on en conclut
que cette température ne peut étre atteinte qu’asymptotiquement.

En particulier, aucun cycle de Carnot, dont une des isothermes serait précisément
T = +0, ne peut fonctionner, comme le montre 'argumentation suivante :

Soit un cycle de Carnot, d’isothermes T} et T et d’adiabates S” et S” : le bilan
d’énergie s’écrit

—A=Q,+Qy=T1(S" = 8+ Tp(S' = 5"). (4.9.11)
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Si le réservoir X9 se trouve a la température 7'(0) = +0, alors Qg = 0 (car S” — S’
est fini). On se trouve donc placé devant une contradiction : malgré 'absence de
courant de chaleur (Qy = 0), le réservoir £(¥) recoit une entropie S” — S’! Il faut
donc admettre, avec Nernst, qu’un processus isotherme a 7' = +0 se fait a entropie
constante :

. T —_ @0 .
Tlgﬂo S[T,V] = TILIEOS[T,p] =5 > —oo, (4.9.12)
soit encore 8S[T V] 8S[T ]
. ) I T P o

Compte tenu des relations de Maxwell,

0S[T,V] _ op[T, V] ot 0S[T, pl _ V[T, p]

4.9.14
ov oT dp or ( )
on en déduit que les coefficients d’expansion thermique sont nuls :
. op ) oV
Jim (5), =0 et fim (55) =0 (4.9.15)

De méme, d’apres les relations (4.5.8) ou (4.5.11) pour la différence des chaleurs
spécifiques ¢, — ¢z, on observe que cette différence disparait a T' = +0 :

lim ¢, = lim & = lim ¢[T]. (4.9.16)
T——+0 T—+40 T—+0

La valeur de cette limite commune est zéro, comme nous allons 1’établir dans la
section suivante.

4.10 Potentiel de Gibbs pour une phase condensée

Nous calculerons g¢ = w® — T's, I'indice ¢ étant mis pour « condensé ». Pour
une pression p pas trop grande, nous avons

T
G[T, p| = 7°[T] = 7(0) + / dT'e(T] (4.10.1)
0
et
T
@5l = () +poTpl + [ T[T (4.10.2)
0
Pour U'entropie 5¢[T], nous utilisons les résultats du paragraphe précédent :
D’une part
os[T
% —0, T —s +0. (4.10.3)
P

On admet qu’il en est ainsi jusqu’aux températures habituelles, pour des pressions
pas trop élevées.
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D’autre part, il existe une entropie minimale 5§, ce qui donne

?TRp]zEﬁTy:§8+lATdT&%§L (4.10.4)

L’intégrale converge, du moment que ¢[T tend vers 0 au moins comme 7€ € > 0
(e = 2 : indication donnée par la statistique) ; elle converge vers 37 pour 7' — +o0.

Par conséquent, nous avons pour g°

[T, p] = (o) + pv°[T, p] + /0 dT'e[T"] (1 - %) — TS (4.10.5)

4.11 Pression de vapeur

L’égalité entre les deux potentiels de Gibbs pour la phase gazeuse g9[T, p| et
pour une phase condensée g°[T, p| donne la courbe de coexistence des deux phases

p=p[T].

Récrivons ’équation de Clapeyron (4.4.9) avec indices c et g :

dplT] 1 ¢ °[T,p]
T~ T Tg (4.11.1)

Pour les volumes spécifiques, d'une part, comme v¢ < v9, v peut étre négligé en
premiere approximation ; d’autre part v9 est donné par la loi des gaz parfaits

v9 =7Tp L. (4.11.2)
Par conséquent, nous obtenons la forme

dp[T] _ ¢#~“dT

p FoT?

(4.11.3)

connue sous le nom d’équation de Clausius-Clapeyron.

Dans une petite région du diagramme 7T'p, on peut considérer la chaleur de
vaporisation ou de sublimation ¢9~¢ > 0 comme une constante. On obtient alors
I'intégration approximative :

1 g7 goe
logp = —— — . 4114
ogp = =T ( )

Ainsi, dans un diagramme (7,logp), la courbe de pression de vapeur, en premiere
approximation, est une droite a pente positive (figure 4.11.1).
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log p

T

Fig. 4.11.1 Courbe de vapeur logp = log p(7). La droite est une premiere
approximation.

Une meilleure approximation est obtenue par I’emploi de 1’égalité g9 = p9 =
e = g¢ c’est-a-dire des formes intégrales obtenues en (4.8.19) et (4.10.5). Dans
cette derniere, nous négligerons encore v° et poserons u°(0) + pv® = w(0).

Nous obtenons alors

(@ - @))%

1 T =— LlogT
og p[7] T — log L
.. TdT’*C[T’](l L)+ =% G e
— C - )+ —
T J, T’ T
Nous définissons la constante chimique i par
50—
j=- P (4.11.6)
r
en prenant en compte la convention
56 =0, (4.11.7)

ce qui est toujours possible, puisque ’entropie n’est définie qu’a une constante pres
et est bornée inférieurement d’apres le troisieme principe (de Nernst).

Cette constante chimique i (ou 5?1) ) est mesurable, une fois les unités de 7" et
de p fixées, car toutes les grandeurs figurant dans (4.11.5) le sont. Nous rappelons
que w(0) n’est pas I'enthalpie a 7" = +0, mais une valeur extrapolée. Aussi

37=¢(0) = @9(0) — w°(0) (4.11.8)

n’est pas non plus la chaleur de vaporisation ou de sublimation a T = +0, mais une
valeur extrapolée.

®)A ne pas confondre avec la densité d’irréversibilité i(Z,¢) > 0.
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A tres basses températures, comme ¢¢[T] oc T3, lintégrale peut étre négligée
et la courbe de pression de vapeur prend la forme (avec passage a la température
naturelle 7 = —1/T et —7 >0 ) :

@ <0) ¢

logp(r) =i+ 7 — Llog(—1). (4.11.9)
T r

Ainsi, la droite (4.11.4) apparait comme premiere approximation de (4.11.9).






CHAPITRE 5

Thermocinétique du fluide

a plusieurs composantes chimiques

Présentation

Ce chapitre reprend le chapitre 3, mais maintenant la présence de plusieurs
composantes chimiques autorise la possibilité de réactions chimiques. L’équilibre
doit donc étre aussi un équilibre chimique (section 1). Il faut également donner
une nouvelle signification a la vitesse ¥ : ce sera la vitesse du centre de masse
dm =Y, Adny. C’est I'une des conséquences de la conservation forte de substance
Ny4. L’autre conséquence est l'existence de la loi de Lavoisier : conservation de la
masse au cours des réactions chimiques (section 2). Les sections suivantes reprennent
le canevas du chapitre correspondant : les d + 1 + C' équations de mouvement (sec-
tion 3), I’équilibre cinétique (section 4) et 'approximation linéaire des équations de
mouvement (section 5).

5.1 Fluide a plusieurs composantes chimiques
Réactions chimiques

Ce chapitre reprend le chapitre 3, dans le cas maintenant ou le fluide est com-
posé de plusieurs substances (composantes chimiques) différentes. Cette pluralité de
substances conduit a des résultats nouveaux.

Nous dénombrons les substances par la notation
AB,...=1,2,...C (5.1.1)

et les différentes réactions chimiques qui peuvent se produire entre ces substances
par
a,b,...=1,2,...r. (5.1.2)
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Nous introduisons les quantités de substance Na(t), grandeurs extensives, et leurs
densités na(Z,t). L’équation de continuité correspondante est

(atnA—i-diV (1771,4 +jA) :pA)(f,t). (5.1.3)

74 est la densité de courant de diffusion de la substance A.

Pour le choix des wvariables d’état locales, procédant par analogie avec la section
3.1, nous prenons ’ensemble des d + 1 + C' variables

{v,s,n }Zt); d+ 1+ C variables. (5.1.4)
Ce choix conduit a écrire, outre la relation pour la densité d’énergie, cf. (3.1.2),
h(Z) = hlv.(Z), s(Z),n (Z)], (5.1.5)
une relation semblable pour la densité de masse :
m(Z) = m[s(Z),n (7). (5.1.6)

Nous la rendons indépendante des v afin de lui conserver son caractere de scalaire
covariant par rapport au groupe de Galilée {G}, cf. section 2.5.

5.2 Définition de la vitesse v - Loi de Lavoisier

Dans le cas d’une seule composante chimique A, 0(¥, t) étant univoquement défi-
nie par la vitesse de l’enceinte C(y,t) = 0, ce qui déterminait un systéme fermé par
rapport a sa masse M (t). Pour le systéme contenant C' > 1 composantes A, B, ..., C,
nous gardons cette conservation forte de la masse (conséquence de la covariance par
rapport a {G}) :

m+mdive = 0. (5.2.1)

On se rappelle que dans ce cas, ¥ est alors la vitesse de ’élément de masse dm. Mais
ici, il faut que cette conservation procede des équations de continuité pour s et pour
les C' densités nyu, np, etc.

m=mls,n]; m=ms+ ZmnAhA. (5.2.2)
A

Il vient alors, a la place de (5.2.1) :

—(mss + ZmnAnA — m)div U — mgdiv J;
4 (5.2.3)
—ZmnAdivj’A —I—m5i+2mnApA =0
A A

WOn devrait écrire, 7, €t pn .. Mais, contrairement au cas m4 # m,,,, iln’y a aucune confusion
a simplifier 'indice.
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Cette forme implique un certain nombre de résultats importants.
1. — D’abord, il faut poser
msls,n] =0 = m=m[n]. (5.2.4)

En effet, vu que I'expression pour ¢ sortira de ’établissement de 1’équation de conti-
nuité pour h (section suivante), et que cette expression ne peut d’aucune maniere
étre déduite de (5.2.3), nous sommes obligés de rendre nul son facteur mg dans cette
derniére équation.

2. — D’autre part, ¥ étant variable d’état, donc quelconque, il faut que son facteur
soit nul également

ZmnAnA —m=0. (5.2.5)
A

Il s’ensuit que les m,,, sont des constantes. En effet, dérivons (5.2.5) par rapport a
np

ZmnAanA + My, 048 — My, = 0. (526)
A
Les ny étant indépendants,
Mpng = 0, VB, (527)
soit
mn, = cteg = A. (5.2.8)

Nous attirons I'attention sur la signification nouvelle de A. Alors que jusqu’ici elle
désignait la substance (par exemple : Hy, HoO, CO,, etc), elle représente maintenant
la masse de l'unité de la substance A et, strictement parlant comme au début de la
section 4.8, on devrait la noter A, lorsque I'unité choisie est la mole.

Le choix de ces unités est arbitraire. La plupart du temps, on choisit la mole
mais pour des raisons qui apparaitrons clairement, nous laisserons, quant a nous, ce
choix ouvert.

Remarquons encore que, de méme que m, au chapitre 3, est une variable géomé-
trique, les na le sont dans le cas présent. En effet, supposant que toute substance
A présente au moins une phase solide (cristal), on peut en former un cristal cor-
respondant a la masse 1A = A, puis y découper la partie n4A (pas de sommation
sur 'indice A!), a température T et pression p données. On a bien ainsi une mesure
géométrique pour ny4.

3. — Dans (5.2.3), il resterait a annuler
> i, (divia — pa) =0. (5.2.9)
A

Ceci n’est pas une condition supplémentaire : on la déduit en effet de (5.2.1) en
utilisant la forme (5.2.5) pour m et 'équation de continuité (5.1.3) pour n4.
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Comme les m,,, = A sont indépendantes en théorie phénoménologique, on de-
vrait avoir

div jA = PA, v A. (5210)

Mais cela réduit alors ’équation de continuité de n4 a
Oyn4 + diV(ﬁnA) =0, (5.2.11)
c’est-a-~dire, dans ce cas, il y a conservation forte pour tout N4(¢) et les réactions

chimiques sont, de ce fait, inobservables.

La seule autre possibilité est d’annuler séparément chacun des deux termes en-
trant dans la somme (5.2.9).

a) D’abord :
> Apa=0. (5.2.12)
A

C’est la loi de Lavoisier, comme le détermine la discussion suivante :
Définissons la réaction chimique a par ’expression

ZVGANAH — ZVaA’A, (5213)
Al

A//

dans laquelle, d’abord, les A" et A” ne sont que les symboles des substances. Les
Vaar €t les v 4 sont des nombres positifs exprimant le nombre d’unités de masse de
A disparus (pour les v 4/) et apparus (pour les v 4+) lors de la réaction chimique a.

Quant a la quantité de densité de masse m due a cette méme réaction a qui
apparait (en n4rA”), elle est donnée par

wa(f, t)l/aA//A”, (5214)

expression dans laquelle, maintenant, A” désigne & nouveau la masse de I'unité de la
substance apparue A", et w, (7, t) la vitesse au point Z et a l'instant ¢ de la réaction
chimique a.

Mais alors, w, (%, t)v,4» n’est pas autre chose que la partie positive de la densité
de source de Ny, soit py4, due a la a-ieme réaction.

Récrivant donc (5.2.12), avec A représentant la masse de 1'unité de A, il vient :
> Apa=) A we(& t)vea =0, (5.2.15)
A A a

ou les v,4 sont comptés positifs, s’il s’agit de « créations » (v,4~) et négatifs, s’il
s’agit d’« annihilations » (v,4/) dans la a-ieme réaction.

Comme les w,(Z,t) sont des variables d’état locales (dans le sens de « courants
thermodynamiques », cf. section 5.3), elles sont donc indépendantes, de sorte que
pour chaque a, on est contraint de poser :

ZA Voa = 0, pour v,4
A

I\

0 Va (5.2.16 A)
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ou
ZA” Ugarn = ZA’ Vga’, poOUT ZZQ:I >0, Va. (5.2.16 i/,/)

AII Al

C’est la loi de Lavoisier, qui exprime la conservation de la masse dans toute réaction
chimique a.

Cette loi, vérifiée a la précision expérimentale de I’époque de Lavoisier, ne I'est
plus aujourd’hui, méme dans les réactions de la chimie ordinaire. Les défauts de
masse sont une mesure des énergies de liaison, conformément a la loi d’Einstein
« Energie = Masse fois (vitesse de la lumiere in vacuo) au carré ». Ils sont caracté-
ristiques des réactions nucléaires. Ainsi ces réactions « ultra-chimiques » ne peuvent
étre interprétées qu’en thermodynamique relativiste, puisque c’est la covariance par
rapport au groupe de Galilée qui nous a conduit a la loi de Lavoisier.

b) Ensuite, 'autre terme donne la condition

> Adivjy =0. (5.2.17)
A

Imposons la condition plus forte
> Aja=0. (5.2.18)
A

Elle va nous permettre de donner a ¢ une interprétation cohérente.

Nous posons en effet que tout le courant de n 4 est convectif avec une vitesse ¥4,
soit :

Tna—+ ja = Tang. (5.2.19)

Alors 1'égalité
R=mi=0) Ang=)» TaAny (5.2.20)
A A

fait de ¥ la vitesse du centre de masse de l’élément de masse dm(Z,t).

U(Z,t) = ) Anatia) (@, 1)/ Y Ana(Z,t). (5.2.21)

5.3 Les d+ 1+ C équations de mouvement

Nous procédons comme a la section 3.2. Mais a présent il nous faut tenir compte
que le systeme X est chimiquement ouvert. En effet, a travers enceinte C(g,t) = 0,
il y aun afflur —(do,74) des substances A par élément de surface d'o (¥,t).
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Le premier principe fait donc intervenir un affluz de travail chimique C' (Po =
dC'/dt en est la puissance et € la densité de courant) :

H(t) = (Po+ P4+ Po)(t)

— - $7. 0@

(5.3.1)
—f@am@w+ﬂwwmmw

- $a7.9F.0)

Comme pour la chaleur, il n’y a pas de source interne de travail chimique : pc = 0.
L’équation de continuité pour h correspondant a (3.2.3) s’écrit

O 2 04" R+ g + a* + ) + pa. (5:3.2)

Quant a la fluxion locale de h, au lieu de (3.2.1), on a

(9th = hiat'l}i + hsats + ZhnAatnA. (533)
A
De fagon correspondante, la pression locale p(Z,t),voir (3.2.5), se définit par
p = shg + Z”Ahm —h (5.3.4)
A
et son gradient, voir (3.2.6),
Okp = 50kha + Y nAOkhn,, — h'Ou;. (5.3.5)
A

Enfin, (3.2.7) donne lieu maintenant a
Oh = =0k (V" R+ pv* + hafb+ > b, ih)
A
— him’lkfem) + 0" Op + Km T O, (5.3.6)

+hgi+ Y hnypa+ §E50hs + Y §hOkhn,.
A A

L’identification de la source py = k;z?“%i redonne (3.2.8) et (3.2.9) :

A , 1 :
h'*=mv' et hlv,s,n]= §mg’kvivk +ufs,n]". (5.3.7)

(Nous prenons en fait mv?/2 = 3, Anav®/2. Nous négligeons donc le terme 3 , Ana(v4 —

v)?/2 qui est toujours petit, parce que nous avons pris comme variable indépendante o et non
les ¥4. Dans ce dernier cas, il faudrait se donner les d C' équations de mouvement supplémen-
taires dvYy = ... (cf. de Groot et Mazur, Non Equilibrium Thermodynamics, North-Holland,
Amsterdam, 1962).
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La méme conséquence de cette division de I’énergie en une partie cinétique et une
o 0

partie interne entraine les expressions pour p et grad p correspondant a (3.2.11) et
(3.2.12)

p:sus—i—ZnAunA—ust—l—ZnAuA—u, (5.3.8)
A A

O0;p = sOjug + Z nA(‘?iunA = s0;,T + Z naoipta, (539)

A A

avec les définitions correspondant a (3.2.13) et (3.2.14)
T(Z,t) = hslv, s,n] = us[s,n], (5.3.10)

A 2

pa(Z,t) = hy,[v,s,n] — TU = Up,[s,n]. (5.3.11)

Pour ramener 0;h a une divergence on procede comme de (3 2. 16) (3.2.26). On
retrouve précisément (3.2.26) pour les densités de courants ¢ et @. Il s’ajoute celle
de ¢ donnée par

AT, t) EY (hnJa) (@) =Y (nala) (@ 1), (5.3.12)

A A

densité de courant de travail chimique.

Combinant le reste des termes, on trouve, pour l'irréversibilité ¢, 1 + r termes
scalaires, 1 + C termes vectoriels et 1 terme tensoriel irréductible , cf. (3.2.29) :

(@0 =T(@,1) (TW’%U% + 3w,
A

+ Tik(fr)(o)vi(g)) (Z,t) > 0",

avec la définition de l’affinité p, de la réaction chimique a

[La(f, t) = _ZVaA,UA<x t ZVaA’HA’ $ t ZVaA”HJA" % t) (5314)
A A"

B)On a utilisé la formule
ZhnAfA:z HAJFi]A ZuAJAJr*ZA]m
A

ou le dernier terme est nul d’apres (5.2.18).
®Vu la relation Y , v4aA4 = 0 et (5.2.15), on a

ZhnApA —

Wa
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qui est une « force thermodynamique » correspondant au « courant thermodyna-
mique » wy.

Nous introduisons a nouveau des coefficients phénoménologiques L,z de facon a
obtenir une forme quadratique pour ¢. Comme nous avons 1 + r termes scalaires et
1 + C termes vectoriels, nous ferons courir I'indice a de 0,1, ... a r et I'indice A de
S,AB,...aC.

Dans le cas isotrope, ou les L,g, pour ne dépendre que des scalaires s et n_sont
eux-mémes des scalaires, il y a donc impossibilité de compensation des termes de
natures tensorielles différentes. On posera donc pour la partie scalaire :

1
Tkk(m = Looavkk + Z Loy pis
b

1 (5.3.15)
_ k
Wq = LaOEU kTt Zb: Lab/JJb
satisfaisant a la condition
—1 -1
(?éoz ;1?2) [s,n.] > 0. (5.3.16)
Pour la partie vectorielle
Js=T7'q' = —Lss0'T = > Lspd'up
, , b (5.3.17)
Ja = —Las0'T — Z Lapdup
B
qui satisfait a
TﬁlLSS TﬁlLSB
<T_1LAS 1L, [s,n] > 0. (5.3.18)
Vu la condition (5.2.18), on a de plus 1 + C' contraintes :
ZALAS =0 pour S
5 (5.3.19)

ZALAB = 0 pour tout B.
A

Les viscosités restent soumises aux conditions (3.2.39), la comparaison de (5.3.15)
avec (3.2.34) donnant
¢ = Loo/d”. (5.3.20)

Si les termes non diagonaux dans (5.3.15) disparaissent, ou si on a une seule réaction
chimique a, on trouve
Wa(Z,t) = (Laapta)(Z,1). (5.3.21)

D’apres la condition (5.3.16), pour T' > 0, la réaction va donc dans le sens A" « A’
(d’apres la définition de w,), c’est-a-dire du potentiel chimique somme le plus haut
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vers le plus bas, ce qui justifie le terme de « potentiel chimique ». Remarquons que,
en général, la relation entre les w, et les u, n’est pas linéaire, car les Ly, Lao €t Loy
peuvent dépendre des 1+ C' variables d’état scalaires, par exemple des 4 et de T

De méme, encore, par comparaison, on obtient pour la conductivité de chaleur
If(f, t) = (T LSS)[T, n] Z 0, (5322)

mais ¢, ainsi que les J4, dépend des gradients des pu4 et de T. On parle alors de
thermodiffusion.

Le systeme des d + 1 + C' équations de mouvement, univoquement donné en
terme des fonctions scalaires, s’écrit maintenant, cf. (3.2.43) :

— —
<8ts+div (173 — Lgggrad T — Z Lsp grad ,uB)) (Z,t)
B

= i(Z, 1)

T”cao((LmﬂF@Qﬁ+2§:umwdw2m
+ ; ; Labuaub) (5.3.23 5)

. .
+ (LSS lgrad T'|* 4 2 Z Lsp (grad T, grad pup)
B
+ 3" Lan (grad ua, grad )

A B
; (2nv§2)vik(°))> (@) >0,

(atnA+diV (17nA — Lyg @T - ZLAB gr?im)) (7, 1)

B

= pa(Z,t) (5.3.23 ny)

= Z VaaA (Lao/d)v’ + Z Z Lab Z(—VbBMB),

a e b B
@m+&@w—1p—@@@%ﬁ%m%)
— 0;(Loo/d)div v + Z Loy Z(_VbB,UB>> (Z,1) (5.3.23 v;)

b B

= £(z, ).

)
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5.4 Deuxiéme principe 2b) : ’équilibre cinétique.

Cette section est 'analogue de la section 3.3. La fonctionnelle ¥[...] dépend
maintenant de d + 1 + C fonctions, puisqu’on a une contrainte sur la masse :

M = ZA NA_ZA/ (dVny)(Z,t) = M, (5.4.1)

soit :
¥ ()50l = | @@
. 1 .
=S +9H — ('l — —w™* My, — BY A Ny (5.4.2)
g A

= Max pour 7" > 0.
La condition de stationnarité du premier ordre : d¥[...] = 0 redonne (3.3.2 v;)
et (3.4.2 s) sans changement, c’est-a-dire le mouvement du fluide se fait a vitesse
linéaire ¥~!( et angulaire —9~'& constantes et la température T(7) = —9~! y est
constante.

En revanche, (3.3.2 m) est remplacé par I'expression
» Av? oi
U, () = <19<T —I—unA) A (¢t — wxy) — ﬂA)( )d 4
(5.4.3)

Av?

= 94— - ) (&) - BA@) ' 0

compte tenu de la définition de p4(Z) et de 'expression de la vitesse (3.3.3 ¢). Ainsi
(3.3.3 m) est remplacé par les C' équations :
2

pa(®) = A (0716 + %)(f). (5.4.4)

Les potentiels chimiques sont donc proportionnels aux unités de masse A. Leurs
gradients ne sont pas nuls

Oipa(®) = A (v*0;0,)(F) # 0. (5.4.5)

La loi de Lavoisier (5.2.16 A) entraine donc [’équilibre chimique pour tout Z, puisque
les affinités de toutes les réactions chimiques sont nulles.

—ZVQAMA(:Z’) =0, Va. (5.4.6)
A

Pour les conditions de minimum ou maximun, données par la deuxieme variation de
T 03[, ] <0, la forme quadratique s’écrit maintenant, au lieu de (3.3.11) :

Ul IS
w,];: ¢Ss 1/}3'”3 I:/Ua S) n] S 0 (547)
kA ¢NAS ¢NANB




Thermocinétique du fluide a plusieurs composantes chimiques 143

On retrouve comme précédemment (3.3.12 ss) et on en tire que la capacité de chaleur
par unité de volume et a densité de substance constante c(¥) est non négative.

De méme, le module de compressibilité isentrope a(s) (%), défini par

as) (L) = (szuss + QZ SNBUp, + Z ZnAnBunAnB) (7)
B A B

(5.4.8)
(=V~'9p[S,V,N]/oV(T)),
en remplacement de (3.3.16), se trouve vérifier également (3.3.17), c’est-a-dire avoir

le méme signe que la température 7'(Z).

Quant & la condition sur ¥, (3.3.12 ik), elle s’écrit

(™% =97 mg™* = —g*Y "Any(7)/T(F)} < 0. (5.4.9)

On en tire & nouveau que la métrique est définie et que la densité de masse m(¥) a
le méme signe que la température (3.3.13). Si 'on choisit le cas euclidien {g*} > 0,
alors de plus A et na doivent avoir le méme signe. On ne perd donc pas en généralité
en choisissant les unités de masse toutes positives :

AB,...,C >0, (5.4.10)

ce qui implique alors
na(z,t), ng(Z,t), ...,nc(Z,t) > 0. (5.4.11)
Quant a la vérification des équations de mouvement (5.3.23), contrairement au cas

précédent, elle n’est pas automatiquement réalisée.

On a encore la nullité de lirréversibilité i(Z,t) = 0, avec 7%U7) = 0 et j5 = 0,
mais il faut de plus que 74 = 0 également. Si on se reporte & expression de ces
courants donnés par (5.3.17), la non-nullité des 0;up (5.4.5) impose 1+ C' contraintes
nouvelles :

ZLSAA = 0 pour 5,
A

(5.4.12)
ZLBAA = 0 pour tous les B,
A

qui sont a rapprocher des contraintes déja obtenues en (5.3.19).

On constate alors que (5.3.19) et (5.4.12) sont compatibles avec les relations
d’Onsager sur la symétrie des coefficients phénoménologiques; elles ne suffisent ce-
pendant pas a dériver ces dernieres.

5.5 Approximation linéaire des équations de mouvement

Cette section est 'analogue des sections 3.4 et 3.5.
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Nous nous plagons a nouveau a [’équilibre statique U(Z,t) = 0. Comme c’est
également un équilibre chimique, puisque w,(Z,t) = 0, donc pa(Z,t) = 0, nous
faisons abstraction des réactions chimiques.

Alors la conduction de chaleur ¢ = Tjs est couplée avec les C' courants de

diffusion 7. Nous poserons, de ce fait, s = ng, ce qui fera courir 'indice A de 1 a
C+1:AB,...=1,2,...,C,C +1.

Les C' + 1 équations de mouvement (5.3.23 s et n4) peuvent étre écrites sous la
forme

Oma(Z,t) =Y auplnp(Ft) A B, ..=12...,C+1, (5.5.1)
B

ou a4p est la matrice

C+1
{OZAB = ZLAD(O)unDnB(O)} Z 0 (552)
D=1

avec l'indice (0) représentant la valeur d’équilibre, comme a la section 3.4.

La forme est non négative, puisque 'on a (5.4.7) et (5.3.16) :

—1 —1
(T Uss 17 snp ) > 0. (5.5.3)

-1 -1
T Up,s T Upyng

Elle est de plus symétrique, asp = ap), si on impose la symétrie des rela-
tions d’Onsager. Par une transformation orthogonale, Oy = O on peut alors
diagonaliser (5.5.1) :

“1
BA»
na =Y Oupms, (5.5.4)
B
bupg = Z ZOAACYAB OE}B = Oygluy > 0, (5.5.5)
A B
de facon a obtenir 1 + C' coefficients non négatifs . On obtient donc 1 + C > 3
équations du type de l’équation de conduction de chaleur :

(O —&MA)%%(f, t) =0, by >0, (5.5.6)

dont les solutions n’existent, pour le cas général et quand les conditions initiales
n4(#,0) sont données, que pour le futur ¢ > +0. L’équilibre statique n’est atteint
que d’une maniére asymptotique n4(Z,t — o0)) = n4(0).

Quant aux équations pour (&, t) = (U, +0))(«, t) elles se réduisent au cas C' =1
si on pose Lap = 0 et si on néglige les réactions chimiques.



CHAPITRE 6

Thermostatique du fluide

a plusieurs composantes chimiques

Présentation

C’est la reprise de la thermostatique du chapitre 4, avec en plus 1’équilibre
chimique : a la section 1, les potentiels thermodynamiques et le théoreme de Gibbs,
avec introduction des concentrations molaires et, a la section 2, ’équilibre entre les
phases et la regle des phases.

L’équilibre chimique est étudié ensuite dans le gaz parfait (section 3) et dans les
solutions diluées (section 4) : il y conduit a la loi d’action de masse. Enfin (section
5) certaines propriétés remarquables des solutions diluées sont présentées : pression
osmotique, tonométrie, ébullioscopie et cryoscopie.

6.1 Les quatre formes d’équilibre
et les quatre potentiels thermodynamiques
Théoreme de Gibbs

Cette section reprend intégralement la section correspondante 4.1 du fluide & une
seule composante chimique. La seule différence provient du fait que la contrainte sur
la masse s’écrit maintenant sous forme de C' termes

M=) ANs=M (6.1.1)
A

Par conséquent, il faut remplacer systématiquement M par N4, m par ny et u par
4. Par exemple, dans la définition de la pression, le terme mu,, est remplacé par
la somme ), nau,,

pS,V,N] = (sus +3 natn, — u) [S/V, N JV]. (6.1.2)
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Aussi, nous n’allons réécrire explicitement que les relations principales et mettre
I’accent sur les relations nouvelles qu’implique la possibilité de réactions chimiques
entre les C' composantes du fluide.

Pour une seule phase, la fonctionnelle s’écrit :

Bls(),n.()] = / (@Ve)(@)

v

= (U +975 — B3 ANy~ V)L ] (6.1.3)

(M stz

avec la densité

els(),n.O)@) = (uls,n] +97's = 8" Any — ) (@). (6.1.4)

1. — FEnergie interne U

¢s a la méme valeur qu'en (4.1.7 s). Mais
05 = Un, — BA = pa(Z) — BA L0, V A. (6.1.5)

D’apres la loi de Lavoisier (5.2.16 A), on a, a I’équilibre, les relations supplémentaires

doit

Mo ==Y Vaapia =0 (6.1.6)
A

données par la nullité des affinités de toutes les réactions chimiques, cf. (5.4.6).

La température T et les C' potentiels chimiques p4 étant constants a I’équilibre,
on peut a nouveau exprimer les C' + 1 variables densités qui sont aussi constantes :

s=s[T,u]=S/V, na=na[T,u] = Na/V.
En les éliminant, on réobtient U comme fonction d’état :
UIS,V,N]=Vu[S/V,N JV]. (6.1.7)

Les C' + 2 variables naturelles S, V' et N4 ont pour conjuguées les variables T', —p
et MA-

Les relations (4.1.12) sur la capacité de chaleur Cy et (4.1.13) sur le module de
compressibilité isentropique a(g) restent valables.

2. — FEnergie libre F

On peut répéter ici tout ce qui a été dit au chapitre 4. F' est une fonction
F[T,V,N].
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La seule relation a modifier est celle du travail mazimal (si T > 0) récupéré, a
savoir (4.1.29). Sous cette forme, il faut que l'enceinte C(¥,t) qui enferme V soit
imperméable pour toutes les substances, ou alors, il est nécessaire d’ajouter un terme
dt au travail chimique 6C'; alors :

—6A—56C < —6F (siT > 0). (6.1.8)

3. — Enthalpie W

Rien de spécial a signaler. W est encore la fonction

WIS, p, N].

4. — Enthalpie libre G

La fonction d’état G = GI[T,p, N.] a pour variables naturelles T, p et les N4
au nombre de C. Le théoreme de Gibbs, toujours valable, fait intervenir un concept
nouveau, celui des concentrations molaires c4 :

CA:]VA/]V7 N:ZNA, 1:ZCA. (619)
A A

Elles constituent un systéme de C' — 1 variables libres seulement. On voit immédia-
tement qu’elles ne sont pas affectées si on multiplie toutes les quantités N4 par un
méme facteur A\. Mais G étant extensive, on a

AGIT,p, N] = GI[T,p, AN, (6.1.10)
relation qui, dérivée par rapport a A, conduit a

GIT,p,N] =Y (aG[T, p, AN] /8(/\NA))3(>\NA)/3/\

A
(6.1.11)
= ZMA[Tapv N] NA
A
qui exprime l'indépendance des p4 par rapport a .
D’autre part :
OG[T,p, N]/ON4 = pa[T,p, N]. (6.1.12)

Par conséquent, les p4 ne dépendent pas de 2 + C variables (T, p et les Ny au
nombre de C') mais seulement de T, p et des C'— 1 concentrations libres ¢4 et donc :

G[T,p,N] =Y Napa[T,p,c]. (6.1.13)

Si nous nous ramenons alors au systeme des r équations (6.1.6), a T et p données,
le nombre des variables libres, les C'— 1 concentrations ¢4 (I'une d’elles est éliminée
par la relation ), c4 = 1), impose la condition suivante au nombre r des réactions
chimiques possibles entre C' substances A, B,...,C :

0<r<C-1. (6.1.14)
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6.2 Equilibre entre différentes phases - Regle de phases

Pour U, F' et W, on reprendra tel quel la section 4.3. Dans 'expression de la
variation de ces grandeurs, le dernier terme devient

> (us — ph) SN,
o A
On obtient donc

T*=T=T, p*=p* =p, pu%=pl=pa. (6.2.1)

Si Iéquilibre chimique (6.1.6) est réalisé dans une des phases, il l'est alors dans
toutes.

Pour G, on se trouve devant C'(¢ — 1) équations

paIT, p, ] = u4[T, p, ] (6.2.2)

pour I’équilibre entre les ¢ phases.

Ces équations contiennent, comme signalé en (6.1.13), (C' — 1)¢ + 2 variables
indépendantes : (C'—1)¢ concentrations ¢ = N§/N® et p, T. Le nombre d’équations
ne pouvant dépasser celui des variables, il vient I'inégalité (C'—1)p+2 > C(¢ — 1),
soit

6 <C+2. (6.2.3)

Si ¢ =C + 2, on a affaire a un point multiple, ou les ¢4, p et T sont univoquement
déterminés. Par exemple, pour C' = 2, ¢ = 4 : deux phases solides (cristaux de A
et de B ), une solution liquide et la vapeur.

6.3 Equilibre chimique dans un gaz parfait

L’équilibre chimique requiert que les r < C'—1 équations (6.1.6) soient satisfaites.
Il nous faut donc calculer les C' potentiels chimiques p%[T, p, ¢f] du gaz parfait.

Pour cela, nous recourons a un « Gedanken-Experiment » (ou expérience idéa-
lisée), celui des boites de Van t’Hoff.

Considérons C' cylindres de méme forme et d’égal volume V. Chacun d’eux est
entouré d’une enceinte C4(7) = 0, I'indice précisant que cette enceinte est imper-
meéable a la substance A mais perméable a toutes les autres B # A. Les températures
sont toutes égales Ty =T, (A =1,2,...,C). La boite d’enceinte C'4 (%) = 0 contient
N4 moles de la substance A (A =1,2,...,C) (cf. figure 6.3.1).

Considérons d’abord les C' boites séparément. La loi des gaz parfait (4.8.4) et
(4.8.5) s’applique alors a chacune d’elles :

VpA:NAFT, WA:NAH)Z[T], SA:NAE%[T,]?A]. (631)
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La constante des gaz 7 a partout la méme valeur, puisqu’elle définit le nombre de
moles N4 pour tout A, selon la section 4.8. Les w%[T] et 5%[T] sont les grandeurs
molaires :

W4 [T) = Wyoy + cpaT, 54T, pa] = GpalogT — Tlogpa + 5%y (6.3.2)

pba

_____________________________

Fig. 6.3.1 Expérience idéale des boites de Van t’Hoff.

Par la pensée, superposons maintenant les C' boites, conformément a la figure
6.3.1. Cette opération est réversible, donc I’entropie reste constante :

S= N45%[T,pa). (6.3.3)

En outre, 'opération se fait sans échange de travail A ni de chaleur Q, ce qui entraine
la constance de W

W= Nuw$[T). (6.3.4)
A

L’enceinte obtenue par superposition est imperméable a tout A et contient N moles.
La pression totale vaut donc :

p=V'FTN[T] =) pa[T). (6.3.5)

On appelle py la pression partielle due a A :

_ N4[T]

p = ca[T)p[T]. (6.3.6)
Formant le potentiel de Gibbs, utilisant les relations (6.3.4), (6.3.3) et (6.3.2) et
éliminant logpa = logp + log ca, on trouve

G=W—TS=> Nyw)[T| — T[T, p] + 7T log ca)
A (6.3.7)
- Z NA(gi[T7p] + leOg CA) = Z NA:U’Ing[TJPJ C~]7
A A

soit la relation désirée

pi[T,p,c] = gi[T,p| + 7T logca. (6.3.8)
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Donc le potentiel chimique de A, a T et p fixés, ne dépend que de la seule concen-
tration cy4.

Notre expérience est idéalisée au moins pour deux raisons. La premiere est que
les parois semi-perméables envisagées ne peuvent étre réalisée que pour certains
meélanges de substances. La seconde est que nous supposons, lors de la superposition,
que les r réactions chimiques ne se produisent pas.

Nos r équations de I’équilibre chimique s’écrivent a l'aide de (6.3.8)

Ha = _ZVaAﬂ,gq[Tapa CA]
A

(6.3.9)
=— Zz/aAgffl[T,p} + fTZZ/aA logca =0,
A A
soit encore, cf. (5.2.16) :
” C //Z/(LAII _ _
[Lean = ™ _ (= 3 vaaghi.s1/eT)
" [y carves i (6.3.10)

= K,T,p] a,b,...1,2,...7.

La loi (6.3.9) ou (6.3.10) s’appelle la loi d’action de masse (Guldberg et Waage).

A T et p données, les K, [T, p| sont des constantes d’équilibre. Il est intéressant
d’en étudier les variations lorsqu’on déplace 1’équilibre en modifiant soit 1" soit p,
I’autre variable restant fixe.

Laissons d’abord p constante. Alors on a

dlog K,[T,p|/0T = — Z (vaa (94T, p)/OT) /7T — g4 /7T*)

6.3.11
= 3" vead§[T)/7T? = @,[T)/7T2. (6.3.11)

On a utilisé la relation (4.2.5 T') et la définition de ’enthalpie molaire g4 = w4 —T54.
Gu|T] est ainsi la chaleur fournie a4 ¥ par la réaction a pour une mole du mélange
(ON4 = v4a z 0). Siq,[T] > 0 (resp. T' < 0), on peut énoncer la régle de déplacement
suivante :

Si, a p = cte, on augmente la température T, pour une réaction endothermique,
le systéme évolue de fagon a augmenter le rapport entre le produit des concentrations
finales et le produit des concentrations initiales.

Laissons maintenant 7" = cte et faisons varier p; on a

0log K,[T,pl/0p = = vaa(0g4(T, p)/0p) /7T

(6.3.12)
=— Z Va9 /7T = —p~* Z VaA-
A A
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On a utilisé (4.2.5 p) et ’équation des gaz parfaits. Comme p > 0, on peut énoncer
la regle suivante :

Si Y AVaA = D oanVaar — Y uVaar > 0, clest-a-dire si le nombre de moles
N =", N4 augmente lors de la réaction a, le rapport entre les produits des concen-
trations finales et des concentrations initiales diminue.

Les deux équations (6.3.11) et (6.3.12) sont facilement intégrables, ce qui intro-
duira une constante d’intégration & déterminer. Mais la connaissance des g4 [T, p],
cf. (4.8.19), nous permet d’éviter cette opération : par substitution dans (6.3.10),
on obtient

log K, [T, p|] = ZVQA(’LUA JTT) — (cpA/f)logT+logp)+z'a. (6.3.13)

La constante d’intégration 7, est reliée aux constantes chimiques 14 de chacune des
substances par

Iy = _ZVaAiA; 14 = (§i(1) = EpA)/fy (6.3.14)
A

si on a introduit la constante de normalisation 52(0) = 0 pour chaque substance.

Si nous reprenons l'expression (6.3.3) de ’entropie pour le mélange, mais comme
fonction de la pression p cette fois-ci, nous sommes conduits a une autre expérience
avec des boites. En effet, 'utilisation de (6.3.6) pour 'entropie molaire (6.3.2) nous
donne

ST, p] = Gy, log T — Tlogp + 5, (6.3.15)
et par conséquent
S dtangel L5 05 N. Z NaS%|T, pal Z Nu(5%4(T, p] — Flogca). (6.3.16)
A
p p p p
A B v c
2aVa=V

Fig. 6.3.2 La boite a parois de séparation.

Le premier terme de la derniere expression, soit

Sarel T2 0, N1 =Y Nas4 [T, pl, (6.3.17)
A

est 'expression de I’entropie d’un systeme de C' boites étanches, de volume respectif
Va = caV, dans lesquels régne la méme pression p (car Na[T|rT = pVa = paV), cf.
figure 6.3.1.
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On peut alors, a V. = >, V4 = cte, retirer C — 1 parois de séparation pour
obtenir le mélange. Cette opération est irréversible, puisqu’elle s’accompagne d’un
accroissement d’entropie

(S ctange — Sespare) (L0 N.] = fz Nalogc,' > 0. (6.3.18)

A
Cette opération est réalisable. On voit qu’il n’est pas équivalent de réaliser un mé-
lange de gaz soit par superposition de boites de méme volume V' et de pression

partielle p4 (expérience idéale, réversible) soit par juxtaposition de boites de méme
pression mais de volume partiel V4 (expérience réalisable, réversible).

6.4 Equilibre chimique dans une solution diluée

A beaucoup d’égards, la solution diluée ressemble au gaz parfait. Elle est réalisée
lorsqu’une des composantes chimiques, le dissolvant D, est prépondérant par rapport
aux autres, dits solutés :

solution diluée : No/Np < 1 pour A, B,...# D. (6.4.1)

On peut alors procéder au développement de Taylor des grandeurs extensives selon
les C' — 1 variables N4/Np. Faisons-le pour U et V, ce qui nous permettra de
connaitre W et la chaleur de dissolution & T, p et Ns (A # D) constantes (>
indique la sommation sur A # D) :

U[T,p,N)] = Npa[T,p, N/Np]

N
= ND(E[Tapa O] + Z/N_gaA[T’p’ 0] + .. )

e 6.4.2
d_fNDuDTp—l-ZNAuATp]—l— ( )
= NaualT,p] +
A
De la méme fagon
V[T,p,N. ZNA [5A[T, p]- (6.4.3)

Le critére qui permet de voir si ce cas hmlte est bien réalisé consiste a augmenter
le dissolvant Np — Np + 1 et a comparer les enthalpies W et W’ a T, p et No[T
(A # D) constantes.

Comme

U ~ (ND T 1)1_LD [T, p] + Z/NAHA[T, p], (6.4.4)

V' ~ (Np + 1)5p[T, p] Z N T[T, p), (6.4.5)
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cela revient a vérifier que la chaleur de dissolution
Q=W —W +1wp) =0 (6.4.6)

est vraiment nulle.

Connaissant W, nous calculons I'entropie S[T, p, N.] pour pouvoir passer a G[T', p, N ].
Or, par définition et & N4 = constante pour tout A,

dU + pdV duy + pdv
dS:—p:ZNA(A—pA)[T,p]
A

T T
(6.4.7)
= ZNAdEA[T,p].
A
L’intégration des dsa[T, p] étant toujours possible, on trouve
SIT,p,N] = NasalT,p] + ¢[N]. (6.4.8)
A

@[N] est la constante d’intégration fonction des N4 seulement. Pour la déterminer,
nous allons recourir a un « Gedanken-Experiment » : élevons T' et diminuons p
jusqu’a ce que la solution devienne un mélange de gaz parfaits, tout en gardant les
ca constantes! L’entropie est alors donnée par (6.3.16), c’est-a-dire §4[T, p| devient
s5[T, p], tandis que @[N] devient —7 ), Nalogca. Revenant a la solution, nous
prendrons pour G[T, p, N ] une formule formellement identique a celle valable pour
le mélange de gaz parfaits (6.3.7) et (6.3.8) :

GIT,p,N] =Y  NapalT,p,c] => Na(ga[T,p] + 7T logca). (6.4.9)
A A
De méme
WI(T,p,N] =Y Nawa[T,pl; w4 =ts+pia. (6.4.10)
A

Il faut remarquer que les fia[T, p, c], ga[T,p| et wa[T, p] sont des potentiels plus gé-
néraux que ceux des gaz parfaits (en particulier, w4 dépend aussi de p, contrairement
a w’).

Pour 'équilibre chimique, la loi d’action de masse reste donc valable, cf. (6.3.9)
et (6.3.10).

Pour la dépendance de la constante d’équilibre K, [T, p], la relation (6.3.11) reste
valable, avec maintenant w[T, p] et q,[T, p] fonctions de T" et de p. Les relations
(6.3.12) et (6.3.13) restent aussi valables. Pour la symétrie, on a avantage a écrire

B(log K,[T, 5])/8p = ~ [T, /7T, (6.4.11)
ou U,[T, p] = > 4 Vaa¥a|T, p| est l'augmentation de volume pour la réaction chimique
a par unité de moles (0N = v4a z 0, analoguement a q,[7].

Les solutions diluées auxquelles s’appliquent les équations dérivées ci-dessus sont
des solutions aussi bien solides, liquides que gazeuses (avec des gaz non parfaits).
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6.5 Propriétés des solutions diluées

L’analogie d’une solution diluée avec un gaz parfait se poursuit dans le cas d’un
systéeme a deux phases, dont I'une est la solution dans un solvant D d’un ou de
plusieurs solutés A, B,... # D.

1. — Pression osmotique

Vl
Fig. 6.5.1 Pression osmotique 7 = p! — p? > 0 exercée sur une paroi
perméable au solvant D et imperméable aux solutés A B... # D.

Considérons d’abord 1'équilibre entre deux phases liquides 1 et 2 (cf. figure 6.5.1),
séparées par un piston semi-perméable (c’est-a-dire perméable au solvant D et im-
perméable aux solutés A, B,... # D). 1 est une solution diluée de A, B,...; 2 ne
contient que le solvant D.

Par rapport au solvant D, I’équilibre est donné par ’égalité des potentiels chi-
miques dans les deux phases, soit

uplT.p') = up[T, p’)- (6.5.1)
Sur le piston s’exerce alors la pression osmotique :
T=p —p. (6.5.2)

La relation pour I'enthalpie libre (6.4.9) nous permet d’exprimer la condition d’équi-
libre (6.5.1) en tenant compte de la grande dilution des A # D dans D : Ny/Np < 1
pour A # D. On utilise le développement log(1+z) ~ x pour z < 1 et 'on obtient :

gp|T, p'] + 7T log cp

golTp") + 7T log(No/(Np + Y 'Na))

(T, p']

(6.5.3)
~ gp[T,p!] — 7T (Z’NA /ND>
A
= gplT,p*] + 0 = up[T, p’].
En développant, nous obtenons en premieére approximation, d’apres (4.2.5 p) :
go[T,p'] — go[T,p?] =~ (p* — p*)3gp[T, p']/0p"

= 7op[T, p'] = fT(Z/NA/ND). (6.6.4)
A
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L’extréme dilution des A # D entraine que Nptp ~ V! est le volume de la solution
en phase 1. On est ainsi conduit a la relation

nV!=FT Y 'N4[T). (6.5.5)
A

7, Vet les Ny (A # D) satisfont & la méme équation qu'un mélange de gaz dans
lequel les N = >~", N4 moles seraient enfermées dans un volume V'*.

2. — Diminution de la pression de vapeur, augmentation de la température d’ébul-
lition et diminution de la température de liquéfaction

Plagons-nous maintenant dans le cas de I’équilibre entre une phase liquide ¢, qui
est celle de la solution diluée, et une autre phase non liquide [ (gazeuse g ou solide
s) du seul solvant D.

L’équilibre du solvant pur donne lieu & une courbe de pression p*(7™), solution
de

(95 — gp)[T*,p"] = 0. (6.5.6)
Lorsque I'on dissout dans la phase ¢ N4 moles de A, Ng moles de B, etc (A, B... #
D), cette relation se transforme comme (6.5.3) et devient :

0y = )Tl = (a5~ (s~ (S/Ne/ND)) )Tl =0, (65
A
Par les mémes arguments, nous obtenons en premiere approximation :
((055,/0T), — (955/0T), ) [T, p°)(T = T*)
+ ((995/9p)x = (935/9p)r ) [T",p") (p = P")
+ 7T (;’Nﬁ/%) (6.5.8)
= —(8p = 8p)[T",p")(T = T*) + (v — ) [T, p"] (0 — 1)

+7T(SNE/N).

A

a) Considérons d’abord la température comme donnée T = T*. On observe alors
une variation de la pression d’équilibre qui vaut

(T) =p(T7) =" (1) = = ("0 () SN (659)
D — Up D 4

Si I'autre phase est gazeuse (8 = g), on peut négliger v devant v% = 7T*p*~'. On
observe alors une variation de la pression de vapeur

1 /
opT"] = =" (T") ¢ > N4 <o, (6.5.10)
D 4
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La pression de vapeur d’une solution diminue.

La diminution relative — (6 p/p*)(T™) est égale au rapport du nombre de moles
dissoutes a celui de moles du solvant.

Si lautre phase est solide (8 = s), la courbe est celle de solidification et la
différence dépend du signe de (05, — 05)[T*, p*(T*)].

b) Considérons ensuite la pression comme donnée p = p*. On observe alors une
variation dans la température d’équilibre :

ST(") = (T = T)(p") = ;ﬂTi (")) 577 N (65.1)

Pour le point d’ébullition (alors 5 = g), on a toujours cjjgﬁ_g [T, p*] > 0, soit une
augmentation 0T (p*) > 0 de la température. Pour le point de liquéfaction (alors
B =5 ), on ade méme g5 ¢ < 0, soit une diminution de la température. Dans les
deux cas, la variation de la température est proportionnelle au rapport du nombre
de moles dissoutes a celui de moles du solvant.

Cette proportionnalité d’ailleurs, aussi bien en a) qu’en b), fait de la simple
mesure d'un op(7*) ou d'un d7'(p*) le moyen de déterminer la masse molaire d'une
substance A qu’on ne peut pas obtenir dans ’approximation du gaz parfait : cette
détermination sera obtenue en dissolvant une masse mesurée de A dans un solvant
D de caractéristiques connues (masse molaire, chaleur de vaporisation et de liquéfac-
tion). Il faut cependant prendre garde que A ne se décompose pas dans la solution,
comme dans le cas de la dissociation électrolytique d’un sel : le nombre des particules
dans la solution ne serait alors plus donné par celui des moles introduites.



CHAPITRE 7

Corps solide déformable

a une seule composante chimique

Présentation

Le traitement du systéme continu fluide a une seule composante chimique qu’on
a donné aux chapitre 2 et 3 peut étre repris, avec quelques modifications, pour un
solide a une seule composante chimique, soumis a de petites déformations. Au lieu
de fixer le référentiel a I’espace (point de vue eulerien), on le fixe & une configuration
initiale du solide (point de vue lagrangien) (section 1). Il en résulte une disparition
du courant de convection et une simplification des équations de continuité. Les va-
riables d’état locales du solide déformable étant choisies, on passe a leurs équations
de mouvement (section 2). Parallelement & la section 3.2, on obtient la méme forme
quadratique pour la densité d’irréversibilité i(Z,t) et, pour un solide isotrope, les
mémes conditions de signe pour la conductivité de chaleur x et les viscosités lon-
gitudinale £ et transversale n. A la section 3, on passe a ’équilibre élastostatique,
dont on obtient une condition de signe pour les modules d’élasticité relativement au
signe de la température absolue. Cet équilibre est unique. A la section 4, on étudie
plus en détail les différents modules d’élasticité : de Lamé, de Young, de Poisson.
Enfin, a la section 5, le cas d’un milieu solide, homogene et isotrope conduit a des
équations d’ondes élastiques, qui sont de la forme des équations longitudinales de la
section 3.4.

7.1 Le solide déformable a une seule composante chimique

Le traitement du fluide a une seule composante chimique présenté aux chapitre
2 et 3 peut étre étendu au solide déformable a une seule composante chimique. Il est
simplement plus avantageux de renoncer a la description eulerienne pour adopter
celle de Lagrange. Par commodité, nous allons reprendre ces deux descriptions en
les comparant I'une a I'autre.
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Dans la description eulerienne qui convient donc bien au fluide, le référentiel
est attaché & l’espace physique R?. Cet espace est le sidge de champs physiques (des
densités de grandeurs physiques), de champs de vitesses et de déplacement. Ainsi,
les points Z € R?, fixes, appartiennent & des lignes de courants Z(t) = ¥, solutions
d’équations différentielles. Le systeme physique est alors donné comme contenu dans
une enceinte qui se déplace et se déforme au cours du temps. L’évolution de ce sys-
teme est donc fixée une fois connues les évolutions des champs et celle de ’enceinte.
En particulier, a chaque instant, I’enceinte abandonne certains points et en enferme
de nouveaux, tous porteurs des différentes densités, que nous symboliserons ici par la
notation générale f(Z,t). Il en résulte un courant de convection, de densité (vf)(Z,t),
qui apparait dans ’équation de continuité

(Ouf + 0w (W* f + j3) = pr) (%, 1). (7.1.1)

A co6té de la fluzion locale de la densité f(Z,t), soit O, f(Z,t), on peut définir une
fluzion substantielle de f(Z,t), soit f(Z,t). La relation entre ces deux fluxions est la
méme qui lie dérivée totale et dérivée partielle, soit :

f(@1) = 0,f (1) + v B f(Z, 1). (7.1.2)

Pour la description lagrangienne, qui convient au solide, le référentiel est attaché
a une configuration initiale du systeme. Les points &, appartiennent au systeme :
c’est 'ensemble des points matériels dont est constitué le systeme; ce sont donc
tous des points remarquables. L’évolution du systeme est donnée par ’évolution de
cet ensemble de points : les vitesses sont celles de ces points. A tout instant, bien
qu’elle se déforme et se déplace, ’enceinte qui délimite le systeme contient toujours
le méme nombre de points. Par conséquent, il n'y a pas de courant de convection.
Ainsi la variation d’une grandeur extensive F(t) = fVO(dV f)(Zo,t) est uniquement
donnée par

dF@):i/‘dVCﬂéf@iﬂ, (7.1.3)
Vo
ce qui conduit a ’équation de continuité sans convection

(Ouf + Ot = pr)(Z, 1). (7.1.4)

En particulier, en ’absence d’afflux et de source, [’équation de conservation forte se
réduit a

Oif(Z,t) =0, soit f= (). (7.1.5)

De plus, la notion de fluxion substantielle perd son sens et se confond avec celle de
fluxion locale :

Ces deux points de vue different également en ce qui concerne les déplacements.

Avec Lagrange, on donne la position initiale des points matériels du systeme;
soit un point 7y a t = 0. Apres une durée t > 0, le point matériel s’est déplacé en
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une nouvelle position Z, qu’on repére toujours dans le référentiel initial {Zp}. Au
point matériel initialement attaché en Zy, on associe le déplacement 7(Zy, t), soit :

Lagrange : (%o, t) = Zo + 7(Zo, t) pour ¢t > 0. (7.1.7 L)

Avec Euler, au contraire, le point # est un point de I’espace physique R¢ au
temps ¢. Pour exprimer la position initiale par rapport au référentiel {Z} au temps
t, il faut remonter dans le passé, c’est-a-dire renverser le sens du déplacement 7(Z, t),
soit :

Euler : Zy(7,t) = & — r(&,t) pour 0 < t. (7.1.7E)

Cette différence va entrainer celle des tenseurs de déformations.

En t = 0, soient deux points « infiniment » voisins Ty et Zy+ d¥y. Leurs distance
est donnée par df? = g;.dzidzk. A Vinstant ¢ > 0, ces deux points se sont déplacés
respectivement en & et & 4+ dZ (on fait donc 'hypotheése que, dans la déformation,
deuz points « infiniment » voisins restent « infiniment » voisins), dont la distance
est donnée par df? = gydxidx® (voir figure 7.1.1). La déformation est donnée par la
différence dl* — dl3. C’est une forme quadratique en dZy ou en d7, suivant le point
de vue :

2 € dxt dz¥ Lagrange
af — g2 = | 2 (%) dz drg Lagrange, (7.1.8 £)
2 1wy (Z) da* da®  Euler,
ol €35 (Z0), resp. Nak)(Z), est le tenseur (symétrique) des déformations.
C(jo) =0 C(f) =0
K (fo—l—dxo) T
dz dr
\ (o)
Ty T
Fig. 7.7.1 Déformation de deux points voisins.
Compte tenu de (7.1.7 L) I’évaluation de € (Z)p) se fait comme suit :
dz' = dxb + OMr'(Zo)dzk = (6L 4+ OXr") (Zy)dal avec 0) = 0/0xk, (7.1.9)
soit 2 i gk 2 0 k7 ¢
dl* = ggdz'dx” = dlg + gu.0,,r"drydx]’
’ oo (7.1.10)

+ GimOyrdzhdal + gi0)r 00 r*dafday,
ce qui donne
1
€(ik)(To) = 5(3?7% + OYri + O™ Opr ) (Zo). (7.1.11)
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Le méme calcul, compte tenu de (7.1.7 E) s’effectue pour 7 (%) :

1
k) (T) = 5(31'7% + Oy — Oir™ Ogrin) (T). (7.1.12)

Dans [’hypothése que les déformations sont petites, et donc leurs gradients aussi, les
deux tenseurs se ramenent au gradient symétrique de 7 :

1
Yie = Yr)(T) = 5(31‘7% + Ori) (Z). (7.1.13)

Nous abandonnons donc la notation &y, bien que nous nous attachions désormais
exclusivement au point de vue lagrangien.

7.2 Equations de mouvement

L’expérience montre que dans le cas du solide a une seule composante chimi-
que et soumis a de petites déformations, son état local est entierement décrit par
la donnée des variables d’état locales indépendantes suivantes : 1'entropie s(&,t), la
vitesse covariante U(Z,t) des points matériels, et le tenseur des petites déformations
Yry(Z,t). Iy a1 +d+ (1/2)d(d + 1) variables indépendantes,

état du solide pur déformable : {s(Z,t), v.(Z,t), v.(Z,t)}. (7.2.1)

De méme qu’a la section 3.1, les équations de mouvement recherchées pour s(Z,t) et
U(Z,t) proviennent des équations de continuité sans convection, que nous écrivons
par commodité :

8th + ak(CLk + qk) = ki'l)i,

Oy — O, = k; avec T = 70R)
t/hq k1 i i )

(7.2.2)
Oym =0 soit m = m(Z) (conservation forte),
045 + Ol =14 > 0.
Quant a I’équation de mouvement pour 7. (7, t), elle est immédiate, compte tenu de
(7.1.13) : c’est le gradient symétrique de la vitesse U

- 1 .. N -
Ok (%, 1) = 5(01-7“;.C + Ok7:) (%, 1) = vy (2, ). (7.2.3)

Comme a la section 3.1, il faut que ces équations de mouvement soient compatibles
avec celles pour la densité d’énergie h(Z,t), ce qui veut dire encore une fois que,
pour un élément de systeme dX(Z), h est fonction de l’état local, ¢’est-a-dire que :

h(Z,t) = h[s(Z,1),v.(Z, 1), 7.(Z, 1)]. (7.2.4)

Nous procédons comme a la section 3.2.
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De (7.2.4), nous tirons que la fluxion locale vaut

Oh(T,t) = <hs(‘3ts + WO + h<ik>aw(ik)) (1), (7.2.5)
avec la définition
p iy det ORL. - ] (7.2.6)
8’7(ik)

Compte tenu de (7.2.2) :
Oph = hy(—0kjk + 1) + h'(m ™ k; + m™'0,7%) + Ry, (7.2.7)

doit étre identique a '
Oth = —0k(a® + ¢*) + k. (7.2.8)

L’identification des coefficients de k; redonne him~1 = v’ et la séparation de hl.. ]
en énergie cinétique et énergie interne u

1 )
h[87 v, 7] - §mg’bk U”ka + U[S’ 7] (729)
Donc
hs =T = ugls, v.], (7.2.10)
hR) = R[5,y ] L& 70D, (7.2.11)

ot T est la température absolue locale T(Z,t) et ou 7R (€D (Z,t) est la partie élastique
du tenseur densité des tensions 7%, avec la méme relation (3.2.17)

Fik = pik(el) 4 Lik(fr), (7.2.12)

I1 n’est alors pas difficile de constater que (7.2.7) n’est pas autre chose que (3.2.25),
ce qui redonne (3.2.26) et (3.2.27), soit

¢"(Z,t) = (Tj&)(Z,t) densité de courant thermique,
(7.2.13)
a®(Z,t) = —(t%0")(£,t) densité de courant mécanique

i(#,t) = T, )((1/d) Urym 4 (55, —8,T) + 7RO gf,g))(x 1), (7.2.14)

Nous pouvons réintroduire les coefficients d’Onsager Log = Lag|s,7.| pour faire de
i(Z,t) une forme quadratique dans les forces thermodynamiques X, (J* étant les
courants thermodynamiques), cf. (3.2.33) :

= (T—1 >3 Laﬂxaxﬂ) (,1). (7.2.15)
« B

Mais l'identité de traitement s’arréte la. Alors que pour le fluide, il avait été pos-
sible d’éliminer la dépendance vectorielle des L,g pour n’en faire que des scalaires
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dépendant des variables scalaires s(Z,t) et m(Z,t), ce qui avait permis d’appliquer
le principe de Curie et de découpler (7.2.14) en ses trois parties : scalaire, vectorielle
et tensorielle, cela ne nous est plus possible, en général, pour le solide, puisque les
coefficients d’Onsager sont fonctions du tenseur des déformations vu.(Z,t) et ne sont
généralement pas des scalaires.

Dans un cas particulier, cependant, nous sommes formellement ramenés au cas
du fluide : celui du corps isotrope. Seuls alors peuvent intervenir les invariants de
la déformation +% et v*vz, ce qui refait des coefficients d’Onsager des scalaires

Logls, v'e, 7*vie].
Toute la fin de la section 3.2 est alors applicable.

7.3 Equilibre élastostatique

Considérons le cas statique, pour lequel la vitesse disparait : I'énergie cinétique
disparait également. Soit

pour 7 —0 : h[s,v,7.] — uls, 7.]. (7.3.1)

Admettons encore que les déformations soient petites, de sorte qu’on puisse dé-
velopper u[s,v.] en série des ~;; autour de I’état initial, qui n’est pas forcément

d’équilibre : un tel équilibre, en effet, exige que les tensions élastiques 7D soient
nulles. Dans ces conditions, on aura
ik L ikem
uls,.] = als] + 6" [s]vix + 5;¢"" [s]virYem- (7.3.2)

2!

Nous arrétons le développement au terme d’ordre deux, puisque alors nous aurons
I’approximation linéaire pour la tension élastique

u*[s,v.] = D[,y | = b%*[s] + *™ 5] ypm,. (7.3.3)

En particulier, si I’état initial (par définition sans déformation) est également ’état
d’équilibre, alors
état d’équilibre = b"*[s¢] = 0, (7.3.4)

propriété qui reste vraie pour une déformation réversible isentropique.

Si nous voulons considérer une transformation réversible isothermique, nous re-
courons comme d’habitude a 1’énergie libre de densité f[s,. ], de développement en
série "

fIT,y.]=a[T] + bik[T]%k + Ecikgm[T]%'ka T, (7.3.5)

ce qui donne pour la tension élastique

SR, 3] = 7T, 4] = 6T + T e (7.3.6)
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Du fait de la transformation de Legendre f = u—sT', on a une méme transformation
de Legendre entre fi* et u®* :
our . IT

fE=u* —s =u" —s

0s ik

(7.3.7)

Dans le cas ot I’état initial est également 1’état d’équilibre, alors b™*[Tp] = 0, pro-
priété qui reste vraie pour une déformation réversible isothermique. Mais comme,
en général, b*[Tp] et b*[sy] ne sont pas nuls en méme temps, si f* est nul, u’* ne
I’est pas, ce qui entraine la dépendance des ;. selon la température,

Yir. = ik [T, (7.3.8)

et méme, en premiere approximation, une dépendance selon I'écart 1" — Tj :
Yir. = Yie [T — To]. (7.3.9)

Dans les deux cas, isentropique ou isothermique, si I’état initial est I’état d’équilibre,
alors dans le domaine des petites déformations la tension élastique est donnée par
la loi de Hooke :

7*ED s ou T,7.] = ¢*™[s ou T Yem. (7.3.10)

Le tenseur c¢'*™ est ainsi le tenseur des modules d’élasticité. Sa symétrie est donnée

immédiatement par la considération du terme quadratique dans les développements
(7.3.2) et (7.3.5) :
Hmis ou T] = (EOEM)[5 ou T, (7.3.11)

Dans les systemes cristallins, d’autres éléments de symétrie viennent s’ajouter, ce
qui réduit encore le nombre de composantes indépendantes de ce tenseur. Sur ce
point, le lecteur est renvoyé aux traités spécialisés.

Comme on peut s’y attendre, le principe d’équilibre lie le signe de ces compo-
santes a celui de la température absolue 7. Puisque 'équilibre élastostatique est
également thermique, nous déduirons ce résultat pour c¢™*"[T.

En effet, I’énergie libre entretient une relation simple avec le travail des forces
extérieures :

SWF =6A= ]{V (A1 K;0r) (1) + /V (dK;6r%) () (7.3.12)

pour une transformation réversible (isotherme) . D’autre part, dans ce cas, la varia-
tion de I’énergie libre prend la forme :

SOPIT, 7] = /

\%4

(WWE%M@ZAMWWﬂHMM@
- [ vz o) @ (73.13)

=f@%ﬂﬁmwﬂ@—/wwwﬂﬂﬂﬁmﬂ
174 174
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le dernier membre étant obtenu par intégration par parties et emploi du théoréme
de Gauss. En identifiant (7.3.12) avec (7.3.13), et en rappelant que f*[T,v] =
7T, ~ ], on retrouve la propriété des transformations réversibles que les forces
extérieures sont des fonctions d’état :

(dVE) () = d*K;(Z) = —(dV O N(@), soit (87 + k) (Z) = 0 (7.3.14 d)
et
ALK () = (do ) (7). (7.3.14d—1)

Ainsi, lorsqu’on se donne la température constante 7', ainsi que les densités des
forces extérieures : superficielle 7% (i) et volumique k;(Z), la fonctionnelle de ces
fonctions qui assure le minimum (resp. le maximum) de ’énergie pour 7" > 0 (resp.
pour T' < 0) doit étre I’enthalpie libre G[T(Z), 75D (3), ki(%)] = G[T(Z), 7D (7).
Analoguement, pour le fluide, c’est bien G|[T, p] qui assure ce minimum (7" > 0), les
fonctions données correspondantes étant la température et la pression.

De méme que pour le fluide, la relation entre 1’énergie libre et I’enthalpie libre
G est donnée par

Gl..]=F[L.]+pl.]V=FL.]+UY ], (7.3.15)

Ueet) yeprésentant 1’énergie potentielle des forces extérieures. Ici encore, la relation
est toujours valable, mais avec un potentiel donné par

U] = = § (ot )@ - [ (@Vhr)@)
|4 |4
= - / AV (Z) [(0er 07" + 75 Doty — OpT D] (7)  (7.3.16)
\%4

= — /v (dVTHED v (Z).

Ainsi, si par les définitions introduites la différentielle de la densité d’énergie libre
s’écrit

5(1)f =—s0T + Tik(d) 5%%7 (7317)
celle de la densité d’enthalpie libre sera donnée par
dWg = —5 6T — ~y, 67D (7.3.18)

qui est évidemment nulle & T et 7%%() constantes. Nous ne calculerons pas la
deuxieme variation de G pour les conditions de minimum. En effet, ce qui nous
intéresse c¢’est de retrouver une condition de signe entre les modules d’élasticité et la
température absolue semblable a celle relative aux modules élastiques de compressi-
bilité a(s) et a(r) dans le cas du fluide. Pour cela, on obtient une réponse immédiate
en prenant en compte la deuxiéme variation de I’énergie libre F' a température fixe,
soit
doit

. > 0
_ / (AVEM™IT) Sy 696m) (7)o
1% < 0

si T 20 (7.3.19)
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compte tenu de la loi de Hooke (7.3.10).

Ainsi, pour toute I’étendue des températures, la forme quadratique semi-définie
n’est jamais négative :

(k) (em) 7]
c
— 3 >0. 7.3.20
Par tranformation de Legendre, on obtient de méme
((ik)(em))
{C — [3]} > 0. (7.3.21)

On peut montrer que lorsque les conditions extérieures sont fixées, le champ de
déformations a I’équilibre 7, (%) est unique. Par une manipulation semblable a celle
employée pour (7.3.13), on obtient facilement

U= [ (@VrHD ) @) = [ (e, )@
v 1%

= 2F[T,~.] — 2F[T,0] > 0

(7.3.22)

puisque, a 1’équilibre, la densité d’énergie libre est donnée par la forme quadratique
L s
f[T7 ry“] — 56((zk)(€m))[T] YikYem (7323)

qui est donc définie positive.

Admettons en effet que I'on a deux solutions distinctes pour le déplacement, soit
7(1)(Z) et 7(2)(Z). Formons les différences :

r'(7) = (722) - 7"21))(5)7
Yie(Z) = (Yirz) — Yik)) (Z), (7.3.24)
THE) = (1) — 7)) (@)
Puisque 8kai(1)(f) = 8k7ki(2)(f) = —k;(Z), alors on a :
OrT"(Z) = 0. (7.3.25)
De méme
(dowt®) () = (47 Kip) — 7' Kiq)(§) = 0. (7.3.26)

Les forces extérieures de surface et de volume sont nulles. Par conséquent
—yea] ] = / (ch((““)“m)) Yik wm> (Z) = 0. (7.3.27)
1%

Comme une forme quadratique définie positive ne prend la valeur zéro que pour 1’élé-
ment zéro, il faut donc que 7,,(%) soit nul, ce qui est contradictoire avec ’hypothese
de deux déplacements distincts.
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7.4 Modules élastiques du solide isotrope et homogene

Dans le cas isotrope, I'énergie de déformation ne peut dépendre du champ des
déformations que par les invariants scalaires qu’on en peut former. Ainsi, la forme
quadratique de I’énergie libre, définie positive

1 .
flT,~.]= icmgm[T]%ka >0 (7.4.1)

ne peut dépendre que des invariants du deuxiéme ordre, soit y;xy* et (vf)?. On
posera donc

FIT ) = lTha™ + (%7, (742

ou AT et u[T] sont appelés modules de Lamé. Le corps est de plus homogéne, si ces
modules ne dépendent pas du point Z.

En utilisant le formalisme du tenseur a trace nulle, a savoir :

i i 1
7 = 7O + S (), (7.4.3)
on peut encore écrire
i N
fIT,7.] = plThi v + ST (7.4.4)
avec ;
X=\+>p (7.4.5)
Pour la tension élastique, on a donc
Tik(el) _ fzk _ QM’YZk + /\gik,yﬁz‘ (746)

D’autre part, on sait (voir la fin de la section 7.2 et la section 3.2) que la tension de
frottement est donnée par

7RI = op™* + £gFot,. (7.4.7)
Les tensions sont donc complétement connues, et A (ou \'), p, 1 et £ ont tous le

signe de la température absolue T

Dans le cas du solide isotrope et homogene, soumis a une compression uniforme,
N[T ou s] n’est pas autre chose que le module élastique de compressibilité a(r ou g).
Soit un tel solide sur lequel est exercé la pression uniforme p (cf. figure 7.4.1).

Fig. 7.4.1 Compression uniforme d’un solide sous pression p.
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Dans un tel cas, la tension élastique vaut
7RED) — _pgtk. (7.4.8)

Portée dans (7.4.6), elle-méme multipliée par g%, elle conduit & une relation entre
les traces de 7 et de ;.

—dp=1%= 2u+ Xd)%. (7.4.9)

Mais comme v est constante,

/dvag:VO'yﬁg:/dV@grez/dVdivf
1% 1% 1%

(7.4.10)
:f(d?,ﬁ)(g) =V -V=AV
v
et vaut précisément I'accroissement relatif du volume
AV
¢
= —, 7.4.11
Ve Vo ( )
Ainsi 9 AV
=—(A+-pu)— 7.4.12
p=—0+ 505 (7412)
et 'on obtient le résultat annoncé :
op 2
=-W(=)r=A+=-p=M\. 7.4.13
a(r) o ( GV)T L ( )

On obtiendra le module de Young et le coefficient de Poisson en pratiquant
I'allongement d’un cylindre de révolution, de section uniforme o3 (voir figure 7.4.2).

&
03

/*2)

1

03

k3
Fig. 7.4.2 Allongement d’un cylindre de révolution.

el)

La seule composante non nulle de 7%%(¢) est 733 de valeur

3
3 _ K

03

T (7.4.14)
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et les seules composantes non nulles de v, sont sur la diagonale
vik =0 pour i # k. (7.4.15)

Reportant dans (7.4.6) la relation entre les traces 7% et 7%, on obtient la relation
générale :

. 1 A .
ik ik —1 ik /¢
= —7"— —(2 Ad . 7.4.16
=T 2ﬂ(u+ )T 9T ( )
Dans notre exemple :
A 33 def K 33
_ A S—— < 7.4.17
Y11 = V22 2#(2M+>\d)7 ET ) ( )
1 A 33 def 1 33
B = 7.4.18
73 (2u 2,u(2mu+)\d)>T E' (7.4.18)
ol nous avons introduits les définitions :
2 Ad
E = /L(M—‘Z_l) module de Young , (7.4.19)
A
A dule de Poi (7.4.20)
k= ——— module de Poisson. 4.
2u+Ad—-1)
E et k satisfont a des inégalités :
E>0si \u>0 (7.4.21)
et 1
1<k < 5 (7.4.21)

Pour les inégalités de &, on les calcule de la fagon suivante, pour ’espace physique
a d = 3 dimensions. Comme A\ = X — (2/d)p, on a Apin, = —(2/d)p pour N = 0,
ce qui fixe K = —1. Pour A — 00, on a ke = 1/(d — 1) = 1/2. En fait, on n’a
jamais trouvé de corps avec k < 0.

On peut récrire (7.4.16) avec E et k

. ;HT”“ - %gl’%@. (7.4.23)

7.5 Ondes élastiques

Nous nous limiterons encore au solide isotrope et homogene, en absence de toute
force extérieure.

Nous avons fait observer, a la section 7.1, que du point de vue lagrangien, il
n'y a pas de différence entre f(Z,t) et 0,f(Z,t). Ainsi U(Z,t) = O (Z,t) est la
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vitesse d’un point matériel du milieu, et v(¥,t) = 0%*7(¥,t) son accélération. Par

, Ny g Y, o 2 — o 92 g
conséquent 1’équation de continuité pour la quantité de mouvement 7 (Z,t) s’écrit
comme équation aux dérivées partielles secondes

(0%r; — m™ 0T (E) = k(&) = 0 (7.5.1)
dans laquelle
Tik — Tik(el) 4 Tik(fT) — 2/1/)/“6 4 )\gik,yfe 4 277,0276 4 fgikvef- (752)

Du fait que
2u"; = u(@irk + Okri),

(7.5.3)
2nv*; = n(Biv* + 0*vy),
la divergence de 7%; s’écrit :
OnT" = p(ORO%r; + 0,0pr") + NOidiv 7 + n(0,0%v; + 0;0,0°) + €0,div.  (7.5.4)
Utilisant la propriété des opérateurs vectoriels différentiels
050" = A = grad div — rot rot, (7.5.5)

on regroupe les termes de (7.5.4) pour obtenir :

8k7kl- = /L<—ra I'(O—iJ 72‘)1 + U(—YFE r((?D atf)l
o . (7.5.6)
+ (A + 2p)(grad div 7); + (€ + 2n)(grad div 7);.

Cela amene a |’équation d’onde couplée :
— —
<m0t2 + (1 + ndy)rot rot — [(A + 2u) + (€ + 2n)d; ] grad div)F(f, t)=0. (7.5.7)

Pour découpler cette équation, comme en (3.4.7%), on décompose 7 en une partie
longitudinale 7| et une partie transversale 7|

— —

% ﬁ
7 =7+ 7L = —grad ¢ +rot a (7.5.8)

et on obtient une équation d’onde transversale et une équation d’onde longitudinale
au sens de la section 3.4, équation (3.4.12). Ces équations sont

(af AN (C%O)Lmt)m(f, t) =0, (7.5.9 71)
(82 - A = (Cro)20,) (7, 1) = 0, (7.5.9 7))
dans lesquelles on a posé :
ci:%ZO et (c2t0)L:%ZO,
o XTI o) = e+ (7.5.10)

m m
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avec 'inégalité évidente
i > . (7.5.11)

En particulier, si Uon fait de ¢ A7 (Z,t) = (u/m)A7L(Z,t) une densité de source
pL(Z,t), (7.5.9 7 ) se laisse écrire comme |’ équation de conduction de chaleur (3.4.7) :

(@ _ %A)mf, t) = pi(Z,1). (7.5.12 71)

De méme pour (7.5.9 7)) :
£+2 . ﬁ _
(& _ (T”)A)UH(J;, t) = py(&,1). (7.5.12 )

Bien entendu, les ondes de chaleur n’existent pas pour le cas isotherme T'(7) =T =
cte').

Pour la résolution des équations d’onde longitudinales, on se reportera a la fin
de la section 4.5. On retrouve le phénomene de la fleche du temps.

(MSi on avait choisi s(#,t) au lieu de T(Z,t), on aurait des « ondes de chaleur » parfaitement
analogues au cas du fluide.



ANNEXE A

Notations, dimensions,

espace affine et espace métrique

A.1 Grandeurs et dimensions

Soit une grandeur physique quelconque, a laquelle nous attachons la lettre x.
Quand nous voulons désigner la grandeur elle-méme, en tant que réalité concrete,
nous parlons de la grandeur abstraite, dans le sens qu’elle est désignée en dehors de
tout référentiel, et la notons x. Mais lorsque nous faisons entrer cette grandeur dans
une théorie ou un calcul, il nous faut la rapporter a un référentiel, muni d’une unité
de mesure de cette grandeur, notée [x|. Par rapport a cette unité, on attache a cette
grandeur un nombre, qui est sa mesure, noté x. Ainsi :

x = ol (A.1.1)

(grandeur abstraite) = (mesure) - (unité de mesure)

Un autre référentiel est caractérisé par une autre unité de mesure notée [X] (pour un
changement de référentiel, nous plagons lindice a gauche), par rapport a laquelle la
méme grandeur abstraite x admet une autre mesure ‘z. Ainsi

x ="z [X]. (A.1.2)

t=au, (A.1.3)
ce qui entraine, vu les égalités (A1.1) et (A1.2), la relation entre les unités de mesure

[x] = o [x]. (A.1.4)

Nous appelons « la dimension de x relativement a 'r, et notons

a = dimy, (). (A.1.5)
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Exemple : soit une longueur L, de 3 méetres ou 300 centimetres. On a

Ll=met [L] =
Ll=met [L]=cm oy 5~ 300em, (A.1.6)
L=3et'L =300
¢’est-a-dire

'L=100L soit 100 = dim,(L). (A.1.7)

La dimension de L est 100 fois celle de L.

En résumé, toute mesure physique s’exprime par un nombre pourvu d’une di-
mension. Toutes les lettres qui représentent des grandeurs physiques, comme S pour
entropie, H pour énergie, etc., indiquent en fait les mesures de ces grandeurs dans
un référentiel fixé une fois pour toutes (par exemple : le systeme CGS, ou le systéme
MKSA, etc.).

C’est pour cette raison que l'on appelle justement équation aux dimensions
I’équation qui lie la mesure (ou l'unité de mesure) d’'une grandeur composée avec
celles des grandeurs de base. Par exemple, pour la travail A, grandeur composée, on
a I’équation aux dimensions A = M L?T~2 (ou [A] = [M] [L]? [T]72).

Enfin, dans un méme référentiel, pour désigner plusieurs grandeurs abstraites,
mais de méme nature, nous recourons a 1’indice placé a droite. Les diverses gran-
deurs X, X', X"  etc., admettent, relativement a la méme unité [X], les mesures
X, X', X", etc. Ainsi, contrairement a (A.1.2) qui indique un changement de réfé-
rentiel, ’X admet pour relation

X = X' [X]. (A.1.8)

Tres souvent, nous employons la notation de Dirac :
X=X (A.1.9)

pour dire que la grandeur variable X admet une valeur (c’est-a-dire une mesure)
constante bien déterminée X'. Ainsi, a la section 1.2, nous désignons par S = S’ =
Smax la valeur a 1’équilibre de I’entropie, tandis que nous désignons par 'S =T S le
changement de référentiel que représente 'inversion du temps (T : t+— —t; S —

—-9).

Soulignons pour terminer que ces notations s’appliquent quelle que soit la gran-
deur physique X. Ainsi a la section 1.1, ¥ est un vecteur, élément de R?, de com-
posantes contravariantes (= mesure) z* dans la base des [¢;] (= unité de mesure).
Un changement de référentiel est donné par la transformation entre nouvelles et
anciennes composantes contravariantes :

= A% o, (A.1.10)

ot la matrice A relie entre eux les ensembles de nombre {2} et {z'}. C’est la raison
pour laquelle I’équation (A.1.10) peut aussi étre dite contravariante.
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A.2 Espaces affines

Considérons un espace, dont la dimension sera n s’il s’agit d’un espace quel-
conque (par exemple le continu espace-temps en théorie de la relativité) ou d s’il
s’agit de I'’espace physique proprement dit.

Selon la section A.1, indépendamment de tout référentiel, les points de cet espace
sont des points abstraits, que nous symbolisons par x, respectivement X. Mais pour
les repérer, il nous faut introduire arbitrairement un référentiel, par rapport auquel
ils sont représentés par leur vercteur position x = {z*} ou ¥ = {x'}, ensemble de
leurs coordonnées contravariantes relativement & ce référentiel 2 ou z°. Comme on
passe d'un cas a l'autre en changeant simplement l'indice grec en indice latin et
vice-versa, nous nous bornerons pour la suite a ’espace physique.

Le référentiel étant arbitraire, on peut en choisir un autre par transformation du
premier. Nous ne traiterons pas des transformations les plus générales (qui peuvent
comprendre des passages a des référentiels curvilignes), réservant cette étude a la
thermodynamique phénoménologique en relativité générale. Nous nous limiterons
ici aux seules transformations affines des référentiels.

Transformation affine.

Une transformation affine du référentiel A = { A%, A’} est définie par la donnée
de d? constantes A" et de d constantes A?, le déterminant des A", étant différent de
zéro, soit explicitement :

At = A% + AY) avec det(A") # 0. (A.2.1)

ou symboliquement
T=AZ. (A.2.2)

Ces coordonnées sont alors dites rectilignes

Il est bien connu que la transformation A est sujette a deux interprétations
différentes : elle exprime soit un changement de référentiel, ce que nous appelons
transformation passive, soit une application de l’espace sur lui-méme, ou transfor-
mation active. Dans la transformation passive, 7 représente le méme point abstrait
que T, ce que, conformément & notre notation, nous exprimons en placant le prime
a gauche T = A . Dans la transformation active, au contraire, on passe d’un point
Z a un autre point 27 dans le méme référentiel : on a affaire & des points abstraits
différents, ce que nous indiquons en placant le prime a droite ¥ = AZ.

Groupe affine.

ono , . /, , o
La condition sur le déterminant A". est posée de fagon que les transformations
affines constituent un groupe. Si dans notre espace nous n’admettons que ce groupe-
la de transformations, nous parlons de I’espace affine.

(D Nous nous sommes inspirés de la notation de J. A. Schouten (mais nous plagons le prime &
gauche plutét qu’a droite pour indiquer un changement de référentiel).
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Explicitons cette propriété de groupe : soit {A} 'ensemble des transformations
affines :

{A} = {A(l)» A(Q)v .- } si A(1) I = A(l)f, A(g) = A(Q)f, etc.

« La loi de composition est interne :

Ay = A Aw) = {AbysAl » Al + AR Al T (A.2.3)
o Elle est associative :
Ap (Apdw) = (Aede)An) = Ap Ao A (A.2.4)
o Il exite un élément neutre, I'identité Ay q =1 :
I =16 0} (A.2.5)

0 = : ., . est le symbole de Kronecker et ou tous les 0° sont nuls,
sit=1

de telle facon que

IA = Al = A pour tout A € {A}. (A.2.6)
« Chaque élément A a un inverse noté A~! défini par :
AT st = AT (R + ATYY) soit = AT (A2.7)
Vu que det(A") # 0, on a évidemment
AT = {A7TY, ATY) = (AT, — AR A (A.2.8)
ot {A71%} est la matrice inverse de la matrice {A%}. On a donc :
AATT=ATTA=1 (A.2.9)
soit
AL ATV = 61 et A5 AT, = 6L (A.2.10)

Sous-groupes du groupe affine.

On peut déterminer plusieurs sous-groupes du groupe affine {A}. Nous nous
contenterons d’observer que tout élément A € {A} peut s’écrire sous la forme d'un
produit de composition

A = Alhom) ptransl) (A.2.11)

ou
Alhom) — 1 4% giy (A.2.12)
Altrns) _ 58 43} (A.2.13)

L’ensemble des A®rems) dans I'interprétation passive, constitue la groupe abélien
des translations d’origine du référentiel

Altransl) .yt — 26 4 AF (A.2.14)
L’ensemble des A"™ forme le groupe homogéne affine (non abélien)
Alhom) . — A gt (A.2.15)
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A.3 Représentations d’un groupe

Nous rappelons ici quelques notions élémentaires de la théorie des représenta-
tions d’un groupe.

Soit un groupe abstrait {A}. Soit un ensemble de matrices carrées {D(A)qp}
d’ordre p
D(A) ={D(A)ap} aetb=1 2 ...p, (A.3.1)

ou A parcourt le groupe A. Si la correspondance
D(A) — A (A.3.2)
est un homomorphisme de {A} dans {D(A)} :
D(A2)D(A)) = D(A2A;) « AsAq, (A.3.3)

la multiplication étant celle du produit matriciel

D(A2)D(A1) = { ) D(A3)acD(A1)ey} = D(A1As)a, (A.3.4)

on dit que le groupe des matrices D(A) qui satisfont a (A.3.2), (A.3.3) et (A.3.4)
est une représentation d’ordre p du groupe abstrait {A}. Si la correspondance est un
isomorphisme de {A} sur {D(A)}, la représentation est dite fidéle.

Deux représentations sont équivalentes si pour tout A € {A}, il existe une
matrice carrée M = {M,}, indépendante de A, telle que

'D(A) = M~ 'D(A)M. (A.3.5)

Une représentation est complétement réductible si on peut lui trouver une repré-
sentation équivalente de la forme :

DM 0 ... 0
_ 0 D®MA) ... 0
'D(A) = M'D(A)M = : : N : : (A.3.6)
0 0 ... DA

Si le nombre m de sous-matrices carrées D" (A) est maximal, chacune de celles-
ci, n’étant pas forcément inéquivalentes entre elles, constitue une représentation
irréductible du groupe {A}.

Pour en revenir au groupe affine {A}, on constate que le groupe des matrices
{A%} forme une représentation irréductible, non fidéle d’ordre d du groupe affine
{A}. Ainsi la matrice A représente la transformation affine A.

Par produit direct A® A, formé des matrices d’ordre d* avec a = {i’k}, b = {ik}
(remarquer la place des indices!),
D(A) ={D(A)p} ={DA)*, =A0 A

11 s /; A-3.7
= {A"™} = {A% A%}, ( )
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on obtient une représentation non fidele, réductible et d’ordre d? du groupe affine
{4}.

Par itération du produit direct, on obtient des représentations non fideles, ré-
ductibles, d’ordre de plus en plus élevé :

DA =A0AQ A - = {A"". }

5 (A.3.8)
= (A A% AY )

A.4 Scalaires, vecteurs et tenseurs

Remarque générale sur le langage mathématique employé.

La géométrie différentielle moderne, avec l'introduction des fibrés tangents et
cotangents sur une variété différentiable, permet de présenter le calcul tensoriel
sous forme intrinseque, c’est-a-dire sans recourir aux composantes des tenseurs par
rapport a un référentiel. Cependant, ce langage nouveau ', s’il est simple et concis,
est encore mal connu des physiciens, et risque malheureusement de le demeurer
encore pendant un certain temps. C’est pourquoi nous renoncons a ’employer ici,
et nous nous contenterons du langage traditionnel chez les physiciens, dont un bon
exemple est fourni par le livre de J. A. Schouten « Tensor Analysis for Physicists,
284 ed., Oxford (1954) ». L’écriture en composantes implique, certes, une débauche
d’indices, pas toujours commode a maitriser, mais elle a pour elle le poids vénérable
de la tradition. Et cette annexe n’a pas pour but de confronter le physicien avec des
casse-tétes mathématiques nouveaux, d’autant plus que la géométrie différentielle
contemporaine est loin d’avoir uniformisé ses notations.

Tenseurs contravariants

On appelle tenseur contravariant d’ordre r un ensemble de d” nombres a2
déterminés par rapport a un référentiel arbitraire, qui, lors d’'un changement de
référentiel A, se transforment suivant la loi

bty A ol A
/a’L1’LQ...Z7~ — A“m'"zr- ) .
2122...0p

g e (A.4.1)
Ils engendrent ainsi une représentation d’ordre d” du groupe {A} selon (A.3.8) :

D(a)ay = D(A) 4,550} {ivia.in} = Al IiQ"‘%*ilig.,,ir ) (A.4.2)
Cas particuliers.

On appelle scalaire un tenseur d’ordre 0. Il demeure invariant a tout changement
de référentiel : ‘a = a. Ainsi sa représentation est la représentation triviale D(A) = 1.

®)Nouveau a I’époque ot ce cours de physique théorique était enseigné. Note de 1’éditeur.
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On appelle vecteur contravariant, et on note a = {ai}, tout tenseur contravariant
d’ordre 1. Leur loi de transformation s’écrit

/,

W' = A%al ou '@ = Ad. (A.4.3)

Il faut remarquer que le wvecteur position ¥ n’est vecteur que par rapport au
groupe affine homogeéne {A"*™}. Cependant, la différence de deux d’entre eux z’ —
T = {2" — 2'} et en particulier leur différentielle d¥ = {dx'} sont vecteurs par
rapport au groupe affine tout entier . Ce fait incite a représenter géométriquement
le vecteur contravariant par une fleche d’origine quelconque (ensemble de deux points
avec un sens fixant 'ordre de ces points).

Tenseurs covariants

Définissons la matrice inverse a (A.3.8) par
{Ailikl'"/i/k/lm} = {Aili/iAilk/kAill/l CRORD } <A44)

Nous pouvons alors définir les tenseurs covariants.

On appelle tenseur covariant d’ordre r un ensemble de d” nombres a;,;, . ;., déter-
minés par rapport a un référentiel arbitraire, qui, lors d’un changement de référentiel
A, se transforment suivant la loi

= g A (A.4.5)

/
r B .
7 1% i

1%9.. i
Ces tenseurs engendrent ainsi une autre représentation d’ordre d” du groupe {A}.
On prendra garde a la transposition des indices rendue nécessaire par I'inversion des

facteurs (A Am) ™! = A(_SA(; :

D(A)as = D(A) iy, .5 iriz.in} = ATtan. . (A.4.6)

%i1i2... i

Cas particuliers.

Le tenseur covariant d’ordre 0 définit le méme scalaire que précédemment puisque
la variable ne joue aucun réle.

. <— .
On appelle vecteurs covariants, et on note ‘a = {a;}, les tenseurs covariants
d’ordre 1. Leur loi de transformation s’écrit

«—
/

v =a;A % ou'a =7AT. (A.4.7)

Leur représentation géométrique donne lieu a 'interprétation suivante : le pro-
duit (scalaire) a;x' = const détermine un plan (un hyperplan si d > 3) doué
d’une orientation. Nous appelons coté positif du plan les points situées sur le coté
a;(z" + dz") > const, voir figure A.4.1.

®)La distance scalaire entre Z’ et & (ou longueur du vecteur) n’a pas de signification pour
Iinstant, ni non plus ’angle entre deux directions.
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Fig. A.4.1

Tenseurs mixtes

Soit p+ q = r. On appelle tenseur mixte d’ordre r, p-fois contravariant et q-fois
covariant un ensemble de d" nombres a"**, ;. déterminés par rapport a
un référentiel, qui, lors d'un changement de référentiel, se transforment suivant la

loi

1 %1%
a n .
p+1tp+2---tptq A4
= - - (A.4.8)
:Auzg...zp' ) 'a/ZIZZ-an‘ ) ) —1zp+1zp+2...zp+q' ) )
192...0p ip+1ip+2--Ip+q lipt1ipt2.liptq

Ils engendrent une nouvelle représentation d’ordre r :

D(A)ar = D(A) {415, tinfips1ipra-fir}iviz ipipsripsa-in}

— Qlilinip - lipriipya.ir
= 5

(A.4.9)

irig... lipi1 fiptae i -

L’ordre d’un tenseur mixte ne peut étre inférieur a 2. On parle de la position
contragrédiente des indices. Si un indice apparait deux fois en position contragré-
diente, on 'appelle indice muet (voir ci-apres 'opération de contraction d’un tenseur
mixte).

Symbole de Kronecker.

Le tenseur mixte invariant, ou symbole de Kronecker, §;, est défini par

1sit="%

X :A’ii(siA—lk/ — AL AR — 51 = A.4.10
- REORT R R T N osii £ k. (4.410)

Les composantes sont les mémes dans tous les référentiels.

Remarque.

Si l'on veut passer du nouveau référentiel (primé a gauche) a Pancien (non
primé), on vérifiera facilement que, dans les lois de transformation des tenseurs, on
remplace simplement les A par leurs inverses A~! et réciproquement. Qu’il nous
suffise de donner ici, a titre d’exemple, la loi de transformation du tenseur mixte

/

iy = A*1@'“./@'.“/ai.../kmA’k...km. (A.4.11)
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Opérations sur les tenseurs

Somme de tenseurs.

Cette composition n’a de sens qu’entre tenseurs de méme variance. Par exemple,
soient les tenseurs a’*; et et b%*. Par définition, leur somme sera

a®, + bk L oy & gk L ik et (A.4.12)

La place des indices dans la somme, la variance exceptée, est une question de conven-
tion. Il est & remarquer que dans l'espace affine, il suffirait d’écrire ai* et b1, puisque
la position relative d’indices contragrédients n’a pas de sens. Ce sens est donné par
I'introduction d'une métrique, qui permet de changer la variance. C’est en vue de
cette introduction que nous adoptons 'écriture présente. En outre, a b ¢ d e etc.
doivent avoir la méme dimension physique.

Produit de tenseurs.

Soit deux tenseurs d’ordre et de variance quelconque. Par produit des deux, on
obtient un nouveau tenseur dont l'ordre et la variance sont la somme des ordres et
des variances des tenseurs composants. Par exemple, soient a’*; et bP,". Par définition
leur produit sera

; Aé6f  pipr  déf
a’klbpqr = ck””"lq = d’qu”’" etc. (A.4.13)

On prend la méme convention que précédemment. La dimension du produit est le
produit des dimensions des composants.

Contraction des tenseurs miztes.

De tout tenseur mixte, on peut obtenir un autre tenseur d’ordre diminué de deux
en rendant muet deux indices contragrédients. C’est 'opération de contraction. Soit
par exemple le tenseur a’;. Par contraction, on obtient

a®, € o (A.4.14)

D’aprés (A.2.10), il est facile de vérifier que ¢’ se transforme comme un vecteur
contravariant.

En particulier, la contraction du symbole de Kronecker est un scalaire égal a la
dimension de ’espace : '
0; =d. (A.4.15)

2

Un autre cas particulier de contraction est le produit scalaire de deux vecteurs contra-
grédients :
— —

c=ab; €(@ b)=(b,a). (A.4.16)

La contraction intervient également dans les produits vectoriels que nous ne
pouvons encore définir pour I'instant.

Critére général de tensorialité.

La multiplication contractée (multiplication tensorielle suivie d’une contraction
d’une ou plusieurs paires d’indices) est un moyen de s’assurer de la nature tensorielle
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d’une grandeur. Soit en effet un systeme de d” nombres. Il n’est pas certain a priori
qu’il constitue un tenseur. Mais si on le multiplie par un tenseur de variance connue,
et qu'apres un certain nombre de contractions, on obtienne également un tenseur,
il s’en suit nécessairement que cet ensemble de d” nombres constitue un tenseur de
variance déterminée.

Nous nous contenterons de traiter un exemple; la généralisation est immédiate.
Soit un systéme de d* nombres a(ij k1) (nous placons les indices dans une position
intermédiaire pour indiquer que nous ne savons pas encore s’il s’agit des composantes
d’un tenseur).

Multiplions-le par le tenseur 6™,F. Si, aprés contraction sur les paires d’indices
n 9
m et 7, et n et k nous obtenons un tenseur ¢’?;, alors nécessairement notre ensemble
de nombres est un tenseur a;7%. En effet, soit

a(ij kP = 7, (A.4.17)

ou 7 et k doivent étre pris comme indices muets.

Nous pouvons alors écrire

(I(/ifjlk’ /l)b’ilk’p = ',
= AT AP a(ij k1)bYP AT,
= AljjA/ppA_liliA_lp/ka(ij k l)b/i/klpAlkkA_”/l.

En identifiant les facteurs de b%?, on trouve
a(i’jkT) = A% AR a(ij k1) ATYATY, (A.4.18)

ce qui montre que a(ijkl) se transforme comme un tenseur d7¥. Nous pouvons
donc écrire

a(ijkl) = a;7%. (A.4.19)

Symétrie et antisymétrie

La symétrie et 'antisymétrie d’un tenseur, signalées respectivement par des ()
et des [] enfermant les indices concernés, n’ont de sens que par rapport a des indices
de méme variance. Elles peuvent étre totales (portant sur tous les indices d'une va-
riance) ou partielles. Elles sont conservées lors des transformations du groupe affine
{A}. Par conséquent, elles induisent une réduction de la représentation engendrée
par le tenseur d’ordre d”. Chacune d’elles contribue ainsi a une représentation irré-
ductible d’ordre plus petit.

Dans ce livre, nous n’envisagerons pas le probleme général de la recherche de
toutes les représentations irréductibles engendrées de cette facon. Pour I'instant nous
nous contenterons d’étudier, de ce point de vue, le seul tenseur d’ordre 2.

Soit a’* un tenseur quelconque induisant une représentation d’ordre d? et soit
a’ le tenseur obtenu par permutation des indices.
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Nous poserons par définition :

gy def 17 ; : Lo

o) & > (alk +a*)  partie symétrique (A.4.20)
i det 1/, ; : o

ikl & 3 (a’k —a¥")  partie antisymétrique. (A.4.21)

Chacune des parties induit une représentation puisque
a’* = (™ 4 qliFl (A.4.22)

« ") induit une représentation d’ordre (1/2)d(d + 1) (qui sera plus tard encore
réduite par 'introduction d’une métrique).

« al’®! induit une représentation irréductible d’ordre (1/2)d(d — 1).

Le tenseur a* est dit symétrique si a®* = a** et alors

a* = o), (A.4.23)

k:

Il sera dit antisymétrique si a’ —ak et alors

a’t = qliMl, (A.4.24)

On a les mémes propriétés de symétrie pour un tenseur a;y.

La partie symétrique du tenseur covariant d’ordre 2 a(yy peut étre représentée
géométriquement comme une surface centrée d’équation

axz'z® = agrya’z® = const (= £1 par exemple). (A.4.25)

Par une transformation affine homogene appropriée, cette forme quadratique peut
se réduire a

i\2
: x
Z ax(z')? = Z (A% = const (= +1 par exemple) (A.4.26)
forme dans laquelle, si const = %1, les A(;) sont les azes principaur. Une nouvelle
transformation affine, par choix convenable des unités suivant les axes, permet de

réécrire cette forme comme '

> (E1)(a)? = 1. (A.4.27)
On appelle signature du tenseur agy) la suite des d nombres +1 et —1 figurant au
premier membre de I’équation précédente, soit :

signat(g) = (11...1 =1 —1...1). (A.4.28)

La signature est définie positive si elle ne contient que des +1. Elle est dite

définie négative si elle ne contient que des —1. Dans les autres cas, elle est dite non
définie.
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A.5 Densités tensorielles et pseudotenseurs

Densités tensorielles

On appelle densité tensorielle de premicre espéce d’ordre r = p+q et de poids k
un ensemble de d” nombres a2 . déterminés par rapport a un référen-
. . . . , (+k) tp+1%p+2-Iptq’ )

tiel arbitraire, qui, lors d’un changement de référentiel A, se transforment comme un
tenseur de méme ordre et de méme variance, a un facteur |A(A)|7* pres, ou A(A)

dénote le déterminant de la transformation A. La loi de transformation est donc

/A I
7l Sip K
a o . =|A(A
(+k)  ipt1lipt2.-liptq [A(A)] (A.5.1)
A,illiQ-..’ip' ] ) ’L'1Z'2...’L'p. ) ) —1Z'p+1’ip+2...’ip+q‘ ] ) e
1192...0p " (+k)  Ip+1ipt2.iptq lipt1lipt2.-fiptq

Le poids est noté entre () afin d’étre bien différencié des autres indices inférieurs.

On appelle densité tensorielle de deuxiéme espéece d’ordre r = p + q et de poids
Lo
k un ensemble de d” nombres @, 2", . _ qui se transforme comme la densité

cmble de dnOmBICS iy iz .
de premiere espece, a ceci prés que le déterminant est pris sans la valeur absolue.

La loi de transformation est donc

A I3
1~"11%2...1 _
a 112 p,‘ ; ; — A(A) k
(+k)  lipr1fipra.liptq (A 5 2)
A/illiQ.../’ip' ) ) ~7;1'i2~~~ip‘ ) ) —1ip+1ip+2...ip+q' ) ) o
1192..0p (+k)  ip+1ip42.-iptq lip+1lipt2-Siptq

Cette densité de deuxieme espece est surmontée d’'une tilde (@), suivant en cela la
notation de Schouten.

Commentaire et remarque.
Les densités de poids négatif sont souvent appelées capacités.
Un tenseur est une densité de poids 0.

Puisqu’ on a aussi bien
A(AnAw) = A(An)A(Awg) (A.5.3)

que

|A(A0)A@)] = [AAW)] A(Aw)], (A.5.4)

les densités de chaque espece induisent une représentation d’ordre r.

Toutes les opérations définies pour les tenseurs le sont également sur les densités.
[’addition ne peut se faire qu’entre densités de méme espece, de méme ordre et de
méme poids (et de méme dimension physique!).

Les densités s’introduisent tout naturellement a partir des tenseurs antisymé-
triques.

Considérons d’abord le tenseur d’ordre d complétement antisymétrique a2 =
alir2-7al J] n’a qu’une seule composante indépendante a'?-? qui est en fait une
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densité scalaire de poids —1, comme le montre la loi de transformation

Mk /, - I /, s -
/a12...d _ A1i1A2 . ‘Adidauzz...zd

= <Z(_1)PA'11,1A/22.2 .. ‘A,did>ai1i2'"id (A55)
p

_ A(A)ailiz...id

i2

ou la somme est a prendre sur toutes les permutations et ou (—1)? vaut +1 ou —1
suivant la parité des permutations. Par conséquent, on peut poser

at? =Gy, (A.5.6)

On aurait de méme
|a1’2'"d| = Q(-1)- (A57)
Ainsi, densités et tenseurs représentent les mémes objets, mais dans des nota-
tions différentes. Ce qui précede n’est que le cas particulier d’'une correspondance
biunivoque qui lie une densité d’ordre p < d a un tenseur d’ordre d — p.

Introduisons les deux densités tensorielles d’ordre d, de deuxieme espece et in-
variantes :

B = = (U (A58)
et
M —1Yigiz..ig = =1} [iniz..iq) = (—1)P. (A.5.9)

Leur invariance résulte de leur compléte antisymétrie. En effet, par exemple (avec
d=d)
8. d —1 A1 AR 4 sivig...d
ety = A(A) T A A%, - AT e (A.5.10)
= A(A)TTAA) =1.

Avec leur aide, on peut construire des densités de poids +1 ou —1, totalement
antisymétrique d’ordre p et duales (contragrédientes) des tenseurs d’ordre d — p :
1

bzzi;.zp _ (d _p)!ézi:i;..lplp+1lp+2---ld TR I (A511)

et
1

b<*1>i1i2~--ip = (d . p)'ﬁ(*l)hiz...ipizﬁlip+2...idaip+lip+2mid- (A512)

La totale antisymétrie est assurée par la valeur des densités invariantes. On voit que
la composante a;,, ,;,,,..:, figure dans la somme avec le signe contraire de a; i, ,...iz»
ce qui revient a dire qu’on peut écrire 1'égalité entre composantes totalement anti-
symétriques

N[ilig‘..ip] o

b<+1> = Olip1ipta...id]

(A.5.13)

et
5<71>[ili2...ip} — gliv+ript2-tdl (A.5.14)
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Dans le cas d = 3 et p = 1, nous obtenons ainsi des densités vectorielles :
cela signifie que tout tenseur antisymétrique d’ordre 2 peut s’exprimer alors comme
densité vectorielle :

. 1, 1
(ikl) — (123) aj,q = geﬁgakl = a(akl — i) = ap)- (A.5.15)
Avec les variances échangées, on obtient
: ~ 1 Lo w (k1]
(ikl) — (123) a1y = or-nik a” = E(a —a*) =™ (A.5.16)

La notation — indique que, par permutation cyclique des indices (ikl) a partir de
(123), on obtient les autres composantes.

Pseudotenseurs

D’une densité vectorielle, comme d’ailleurs d'une densité d’ordre quelconque,
on passe a un vrai vecteur, respectivement a un vrai tenseur, par multiplication
avec une densité scalaire de poids contraire et de méme espece. Mais si I'espece est
différente, la quantité obtenue va dépendre du signe du déterminant de la transfor-
mation lors d'un changement de référentiel : c¢’est alors ce que nous allons appeler
un pseudotenseur.

Un pseudotenseur est un objet qui se transforme comme un tenseur lors d’une
transformation A, au signe du déterminant de A pres. Ses composantes seront notées
par une lettre latine surmontée d’un petit cercle. La loi de transformation s’écrit

1212 i :
atn, o, =sign(A(A))
p+1tp+2---ptq (A 5 17)
A/illiz.../’ip. ) ) Oilig.uip‘ ) ) Ailip+1ip+2"'ip+q, ) ] e
Gil0Boodlpp p+1tp+2---Ipt+q lipt1ipy2.-fiptq

Espace volumétrique.

Nous appellerons espace volumétrigue un espace affine dans lequel est définie
une densité scalaire g de premiere espece, de poids +1, constante et positive :

gryy =const >0 g1y = [A(A)|TNg4)- (A.5.18)

Dans un tel espace, a partir d’une densité scalaire, nous pouvons faire un pseudos-
calaire :

b= g by, (A.5.19)

c’est-a-dire que tout tenseur completement antisymétrique d’ordre d y définit un tel
pseudoscalaire. Par exemple, si a;x..q = aji..q), il suffit de former la densité

T 1 ~1112...1
sty = 8T M nia.ia- (A.5.20)
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Pseudovecteurs ou vecteurs axiau.

De méme, a partir des densités vectorielles' ', on obtient des pseudovecteurs ou
vecteurs aziauz, notés @ = {a'} et @ = {a;} respectivement. Par le méme procédé,
dans le cas important d = 3, tout tenseur antisymétrique d’ordre 2 définit un vecteur
axial :

< o -1\~ i PTG DU *

a = {a = (g<f1>)a<+1> = (9<,11>)§€<+1) klakzl = a[kl]} (A.5.21)
et |

@ = {&i = (9+1)) -1y = (9<+1>)§ﬁ<+1>ikzakl = a[kl]}, (A.5.22)

N * . . . . . . . . /.
ou = signifie = si g1y = 1. En particulier, la multiplication extérieure de deux
vecteurs de méme variance crée un tel tenseur antisymétrique

ik — Clik) 98 gk ey (A.5.23)

qui, dans le cas d = 3, définit le pseudovecteur multiplication vectorielle de @ et 5,
c’est-a-dire ) . . . .

L @A = —pAd Y gu{ath — b} = {4} (A.5.24)
et - )
J=—[b A'a] = gt {aibr — aibi} = {¢'}. (A.5.25)

Nous pouvons aussi étendre la notion de produit vectoriel au produit d’un vecteur
par un pseudovecteur :

T L@ Ad = —[a A ] = grnfoat —ata'} A
i - i o b (A.5.26)
- g<+1>g<71>(s.s.){wkla —wa'} = {wa”} ={a},
ou la notation (s.s.) signifie « sans sommation ». De méme, on définira
CE (@A T] =T AB] = gy {oia — i} (A.5.27)

Nous obtenons ainsi des vecteurs polaires.

A.6 Fonctions de tenseurs et champs tensoriels

Un tenseur peut étre fonction d’un autre tenseur. Si, par exemple, le tenseur f;
est fonction du tenseur ay., nous écrivons

= fHa ], (A.6.1)

@ par opposition aux vecteurs proprement dits, souvent appelés vecteurs polaires.
®)Nous devrions écrire plus correctement { %} et {a?,,}, mais notre notation par points évite
toute confusion a omettre les accolades.
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notation qui nous permet de distinguer avec une dépendance de la seule composante
afy,, qui, dans ce cas, serait notée

fikl = fikl [aqu]. (A62)

On peut alors former les dérivées partielles du tenseur par rapport a des compo-
santes données, soit pour la composante ay, :

a]mkl[a] _ ik qry,-
Olar,,] = 9"l S

On vérifie en effet facilement que I’ensemble de ces dérivées forme un tenseur (prendre
note de le variance!), fonction du tenseur a?,,.

La loi de transformation d’une fonction de tenseur s’exprime par
Ifli/k/l [/CLI-/.I.] = Ali/kikfikl [CL...]Aillq 0 <A64>

° . oy s . /, . o
Cette relation est une identité en a'.. ou en a'.. si nous substituons dans I'un des
membres la valeur de a?,, exprimée & partir de I'autre référentiel (c’est-a-dire si nous
. N A L. —1.. .
substituons & a.. sa valeur A"a..A™'"/. ou inversement).

En particulier, bien que le « vecteur position » Z ne soit vecteur que par rapport
au groupe homogene {A*™1 i le tenseur f7; (pris pour exemple) est fonction de
I’endroit, ¢’est-a-dire fonction du « vecteur position » Z = {2}, nous dirons que f*,
est un champ tensoriel.

Champs tensoriels

Un tenseur est dit champ tensoriel s’il est fonction de ’endroit, celui-ci étant
donné par le « vecteur position » contravariant ¥ = {z'}. On note un champ tensoriel
par

% = &) (A.6.5)
La loi de transformation d’un champ tensoriel s’écrit
"FR () = A R (Z) AT (A.6.6)

C’est une identité en ¥ ou en ', si nous substituons @’ = AZ, respectivement ¥ =

A7VE [ of. (A2.2) et (A.2.7).

Les champs tensoriels, en tant que tenseurs, sont susceptibles des représenta-
tions géométriques déja indiquées, a cela pres que les grandeurs géométriques sont
maintenant attachées au point &, ¥ parcourant tout I’espace. Ainsi :
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« @(Z) est représenté par une fléche orientée pour tout 7 (fig A.6.1).

o ‘@ () est représenté par un plan orienté, le coté positif étant défini par 'inégalité
(‘a (Z) - dZ) > 0 (fig A.6.2).

l

Fig. A.6.1 Fig. A.6.2

o La partie symétrique du champ covariant d’orde 2 a(x)(Z) détermine, pour tout
Z, une surface centrée par la forme quadratique

air(Z) (2" — V) (2™ — 2¥) = const. (A.6.7)

Tout ce qui a été dit a ce sujet a la section A.4, de (A.4.20) a (A.4.28), reste
valable, en particulier la notion de signature du tenseur.

« Pour d = 3, le vecteur axial @(#) définit, en tout Z, un aze doté d’un sens de
rotation (fig A.6.3).

« Pour d = 3, le vecteur axial @(Z) définit, en tout Z, un plan doté d’un sens de
rotation (fig A.6.4).

l

Fig. A.6.3 Fig. A.6.4

On voit, par les deux dernieres représentations géométriques, que les notions de
densité tensorielles et de pseudotenseur s’étendent aussi au champs.

Il en va de méme des opérations sur les tenseurs, a cela pres que s’introduisent les
notions de localité et de multilocalité. En effet, les champs composant de la somme ou
du produit peuvent étre pris au méme point 7, le composé étant alors un champ local
en T, ou pris en des points différents du méme référentiel Z, Z’, 7" etc., auquel cas le
composé est un champ multilocal en T, ¥', 2" etc. Cette derniere possibilité n’existe
que parce que les transformations de référentiel envisagées sont des transformations

affines, indépendantes du point. Par exemple, voici des exemples de champs bilocaux

a'H(Z) + i3 € Az, ) (A.6.8)

a (D), (2) € P (7, 7). (A.6.9)

C’est la multilocalité qui donne un sens a l'opération d’intégration (voir la section
suivante).
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Opérateurs différentiels

Comme pour le cas général d'une fonction de tenseur, les dérivées partielles
d’un champ tensoriel par rapport aux coordonnées z*, consituent un autre champ
tensoriel, de covariance d’une unité plus grande :

O f(T) = g™ 1(T).- (A.6.10)
Nous faisons usage de la notation
0, ¥ 0/0r" et ‘9, Lok (A.6.11)

qui exprime le fait que opérateur de dérivation partielle 9/0x" se transforme par
changement de référentiel comme un vecteur covariant. Ceci n’est vrai que pour
I'espace affine, car la loi de transformation affine (A.2.1) pour Z assure que le rapport
dat/dx" = A% est indépendant du point Z, ce qui n’est pas le cas général.

Par différentes applications de cet opérateur, on obtient les champs gradient,
divergence et rotationnel de champs d’un type approprié.

Gradient

Si f(Z) est un champ scalaire, on appelle gradient de ce champ le vecteur cova-
riant obtenu par ’application de 'opérateur 0;, et on le note

grad f(7) € {0, (@)} (A.6.12)

La regle de dérivation d’une fonction de fonction suffit a mettre en évidence la nature
tensorielle du gradient. En effet :

Dif (%) = 0:f ()01 /0wy = O, (F) AV, (A.6.12bis)

Divergences

Si f(Z) est un champ vectoriel contravariant, on appelle divergence de ce champ
le scalaire obtenu par contraction apres application de 'opérateur 0; :

—

div f(7) & 0,£(2). (A.6.13)

D’un tenseur a plusieurs indices contravariants, on peut obtenir plusieurs divergences
tensorielles, indépendantes I'une de ’autre si le tenseur ne présente pas de symétrie ;
par exemple

0, f % (Z) = ¢"(T) # 0, f¥(F) = Rh (). (A.A.6.14)

Rotationnels

H
Si f(Z) est un champ vectoriel covariant, on appelle rotationnel de ce champ le

tenseur antisymétrique covariant d’ordre 2 obtenu de la maniere suivante

roti £ (£) < (Bifs — Of) (3). (A.6.15)
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Par conséquent, dans le cas ou d = 3, on peut obtenir de ce tenseur le vecteur azial
S déf [ .
10t £ (@) € (974 ) {0:fi — 0k} (@), (A.6.16)

selon la notation indiquée en (A.5.21). Pour d = 3 toujours, on peut prendre le
rotationnel d’un champ vectoriel axial covariant f(Z), qui est un vecteur polaire
défini par

—

rot f(7) & {— akw[’“‘l}(f), (A.6.17)
selon (A.5.22) et (A.5.27).

L’introduction d’une métrique, par les changements de variance qu’elle permet,
nous donnera la possibilité de définir des rotationnels covariants, polaires et axiaux,
toujours pour d = 3, ainsi qu'un nouvel opérateur scalaire, le laplacien d’'un champ
scalaire.

A.7 Eléments de volume et de surface — Intégration

Eléments de volume

Dans 'espace a d dimensions, considérons a partir du point Z, d déplacements
élémentaires d¥(y), k = 1,2, ...d, linéairement indépendants, c’est-a-dire tels que

i = {dziy} = lim {&} —7) (A.7.1)
et
d
Z C(k)df(k) =0= Clk) = 0VEk. (A.7.2)
k=1

Ils déterminent un(hyper si d > 3)-parallélépipéde élémentaire au point Z dont la
capacité peut servir a définir I’élément de volume au point ¥ de la maniére suivante.

Mesure positive de [’élément de volume.

On appelle mesure positive de [’élémént de volume en ¥ la densité scalaire
d?z|_,,(%) de poids —1 définie par

diz_yy(7) = ‘Z(—wdagg)dxf;) . dx’('g)‘ — ‘ det (d:o(.))‘ >0, (A.7.3)
P

ou la somme sur P est a prendre sur toutes les permutations P de (12...d), avec
(—1)? = + suivant que P est paire ou impaire.

La loi de transformation est bien celle annoncée, puisque, avec d'7 = Ad¥, on a

A1y (F) = | det(dzlny)| = |det (A" d%,)| = |A(A)F dioy(F)  (AT.4)



190 Eléments de volume et de surface — Intégration

Dans un espace volumétrique, qui, rappelons-le, est un espace affine dans lequel
est définie la densité scalaire de premiere espeéce g(y1y de poids +1 et constante
positive, cf. (A.5.18), il est donc possible de former un vrai scalaire positif qui
permettra de définir I’élément de volume en 7.

Elément de volume.
Dans 'espace volumétrique, nous appellerons élément de volume en ¥ le scalaire
positif défini par

_»n déf s
4V (#) ¥ gioyd'zy (@), (A7.5)

d'V(7) = dV (). (A.7.6)

Nous donnerons & dV (&) presque exclusivement la forme pratique suivante. Par

un choiz particulier des déplacements élémentaires d() (%) en les prenant le long

des axes lL‘k, nous pouvons poser

dZgy = {0,0...dz"...0}, (A.7.7)
ce qui donne a ddx<_1>(:(7) la forme, avec dz® > 0 par définition :
d'x1)(%) = da'da® - dx? > 0, (A.7.8)

ot = désigne 1’égalité lorsque le choix (A.7.7) est adopté. L’élément de volume prend
donc la forme
dV (%) = gpyda'da® - - - da® > 0. (A.7.9)

Par la suite nous omettrons 'astérisque.

Eléments de surface
C’est a partir de ’élément de volume que nous allons définir I’élément de surface.

Considérons une enceinte fermée dont la surface est donné par C(y) = 0. Nous
notons par ¥ les points appartenant a cette surface et par & les points de son intérieur.

En un point ¢, envisageons un déplacement élémentaire d7(y) ; son orientation
est positive s’il est effectué vers I'extérieur de la surface. La notion de normale a une
surface n’est pas utilisable ici puisqu’elle n’a de sens que dans un espace métrique.
Dans son mouvement, I’élément de surface balaie un élément de volume 6dV (%), qui
est compté positivement sous ces conditions.

l 6T
5dV(7)
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Fig. A.7.1

Ces conventions nous amenent donc a poser
0dV (y) = (daiéri)(gj), (A.7.10)

si 07(y) est orienté du coté extérieur de la surface.

Cela entraine de considérer le coté extérieur de 1’élément de surface comme
positif d’'une part, et de faire de cet élément de surface un vecteur covariant d'o (i)
d’autre part, ce qui est bien en accord avec la représentation géométrique d’un tel
vecteur.

Lorsque nous utilisons la forme pratique (A.7.9) pour dV(Z), nous pouvons don-
ner & d'o (%) une forme correspondante si nous procédons au choix supplémentaire
suivant du déplacement 67(y) :

67(7) = {0,0...0,£dy",0...0}, (A.7.11)

ol le signe plus est pris pour un déplacement vers I’extérieur de la surface et le signe
moins pour un déplacement vers l'intérieur. Nous obtenons alors les égalités

0 < 6dV (§) = £grnydy'dy® - - - dy' ™ (£8y")dy"** - - - dy*

: (A.7.12)
= (s.8.)(do;0r*) (7).

Cela revient & dire que, pour la i-iéme composante de d'o (¥), il faut prendre

do;(Y) = ig(+1>dy1dy2 - -dyi_ldyi"'l .. .dyd

; A.7.13)
d— s déf 3 (

= g(-1) (d 1y)<+1>i avec OT(y) = {0,0...O, +60y",0.. .O},
ol le signe plus est a prendre comme précisé pour la formule précédente. Toutes les
autres composantes de do (i) sont arbitraires du moment qu’elles ne contribuent
pas au balayage particulier considéré; la double astérisque signifie que 1’égalité est
conditionnée par le choix supplémentaire opéré.

Par la suite nous omettrons aussi la double astérisque.

Tenseur densité et tenseur grandeur extensive

Nous définissons un élément de tenseur en T, que nous notons dF"_(Z), de la
maniere suivante :

dFi-, (7) & (9<+1>dd$<71>fi”'l...) (7). (A.7.14)

Il est facile de vérifier que le membre de droite se transforme, par changement de
référentiel, comme un vrai tenseur.

Dans l'espace affine, la somme des éléments de tenseurs en plusieurs points

— =

Z, @, 7" ... etc. est encore un tenseur multilocal. On peut alors, en particulier, faire la
sommation pour tous les points Z situés a I'intérieur d’une enceinte fermée C'() = 0
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(qui peut méme comprendre tout 1'espace). Le tenseur multilocal F*;  obtenu est
donc, du point de vue de la thermodynamique, une grandeur extensive :

Pl € / dF' (7). (A.7.15)
FeC(#)=0

Pour souligner ce caractere, nous le désignons par une majuscule.

Mais dans un espace volumétrique, en multipliant et divisant par la densité
invariante, il est possible de noter I’élément de tenseur sous le forme

dF" . (Z) = (aV f.) (@), (A.7.16)

ou f’l(f) est maintenant un vrai tenseur qu’on appelle tenseur de la densité de
F* 7 et que nous noterons d’'une minuscule.

Par définition, le tenseur densité en T de la grandeur extensive F'+ (T), est
donné par le rapport

firr (@) E (dF™, /dV)(Z). (A.7.17)

Théoréme de Gauss
C’est un cas particulier du théoreme mathématique de Stokes qui s’énonce :

L’intégrale de la différentielle d’une forme sur un domaine ' est égale a l'intégrale
de cette méme forme sur la frontiére du domaine.

Ici nous formulons le théoréme de Gauss de la maniére suivante :

/ AV (@)0% f1..(3) = f do (@) 1 ). (A.7.18)
ZeC(y)=0 C(9)=0
l CH) =0 d7(y)
dx® '
dy't ] 1 0 dy'dy' = £(d*)x

Démonstration.

©)On évitera la confusion entre les dénominations densité tensorielle f{ﬁ'l) 1...(Z) et tenseur (de
la) densité f*. (Z) de F*y. .
(M Plus précisément, sur une chaine.
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On commence par considérer un (hyper-)cylindre C dont la hauteur est parallele
a xp et de base dridrs - - - drg_1drg, - - - dxrg. Dans le cas de la figure A.7.2, ou il
n'y a que deux intersections entre C et la surface fermée C(Z) = 0, les bases sont
nommées S; et Ss. 11 vient donc :

/ V(@)D ()
reC

geyda'da® - da* e da? (s.s.) / dz" 0, f*1..(2)

1!

I
oo~ T T T

Vo )
g<+1>d$1dlﬁ2 ce dxkfldxk+1 e dl’d(S.S.){ / + ... } (dxkakle(f)>
Yy

!

gpydatda? - - - dzF gt dxd{( — f @)+ P @)+ }

S1+82+ S1+82+-

*
ou la notation + est utlisée pour rappeler que le cylindre choisi peut aussi avoir 4,
6, etc. intersections avec la surface.

Le résultat final est obtenu en sommant sur tous les cylindres élémentaires in-
tersectant la surface C'(y) = 0.

A.8 Espaces a métrique constante

Nous parlons d'un espace a métrigue constante s’il existe un tenseur symétrique
2 fois covariant indépendant de I’endroit &

9i5 = 9(ji) (A.8.1)
tel que la matrice qui le représente soit inversible, c’est-a-dire tel que
det(g.) #0 et g™ g =6 (= g7), (A.8.2)
ol nous avons posé
1 déf
{o.)7 = {g}. (A.8.3)

Il suit du critére de tensorialité que g est un tenseur (cf. (A.4.6) et suivantes). Ce
tenseur est symétrique par sa définition

gk = gk, (A.8.4)

Il convient de rappeler qu’on peut toujours ramener un tenseur covariant symé-
trique a la forme diagonale, les éléments diagonaux prenant les valeurs +1 et —1,
cf. (A.4.27), et que la suite des +1 puis des —1 est appelée la signature du tenseur.

Donc, on appelle signature de la métrique la signature du tenseur g;; que l'on
nomme encore tenseur fondamental.
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Espace euclidien

On appelle espace euclidien un espace dont la signature de la métrique constante
gir. est définie, soit positive, soit négative

espace euclidien <« signat(g ) =£(11...1). (A.8.5)

Si cette signature n’est pas définie, nous parlerons d’espace pseudo-euclidien.

Nous appellerons encore référentiel cartésien (ou pseudo-cartésien) un référentiel
dans lequel la métrique g;, apparait dans la forme diagonale qui définit sa signature.
Ainsi :

référentiel cartésien & gy = 0} (A.8.6)

Dans toute la suite, nous n’envisagerons que des espaces euclidiens a métrique définie
positive.

L’introduction du tenseur g;; conduit aux résultats suivants.

Correspondance entre covariance et contravariance

Ce tenseur établit une correspondance biunivoque entre vecteurs covariants et
contravariants. En effet si

alors, (A.8.2) impose que
v* = g*ay. (A.8.8)

Par conséqent, a; et b¥ doivent étre considérés comme deuz représentations diffé-
rentes (covariante et contravariante) du méme vecteur que nous sommes incités a
désigner de la méme lettre a :

a; & gia® et a £ g*ay. (A.8.9)

Ainsi, le tenseur métrique gy, (comme son inverse g**) permet de passer & volonté
d’une représentation a une autre, pour tout tenseur, densité tensorielle ou pseudo-
tenseur, simplement par élévation ou abaissement des indices de leurs composantes.
C’est dire, en fait, qu’il abolit la distinction entre covariance et contravariance. Par
exemple, d’un tenseur mixte a’*+y, , on peut, entre autres, en donner la forme
totalement contravariante

. / / - °
giktme — gl gmme L gk, (A.8.10 contravariante)

ou la forme totalement covariante

</ 1./ .
Qik..im... = Giir Ghek? * = QX o (A.8.10 covariante)

C’est de cette fagon que nous avons obtenu, en (A.8.2), la forme mixte du tenseur
gir lui-méme.
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Remarques inportantes.

Cette opération donne maintenant un sens a la notion d’ordre absolu des indices,
sans tenir compte de leur nature puisqu’il est clair, a priori, que

azk...lm... 7,éa/l’m...zk...‘

En particulier, dans le référentiel cartésien, les composantes covariantes et contra-
variantes de tout tenseur, densité tensorielle ou pseudotenseur sont entierement
confondues. Par exemple, pour d = 3 :

3 S - A
a'=a; ou a =d, deméme a=a. (A.8.11)

Longueur ou norme d’un vecteur — Distance

Le nom de métrique vient de ce que le tenseur g;, permet de donner un sens a
la longueur d’un vecteur ou a la norme d’un vecteur.

Le carré de longueur d’un vecteur ou de sa norme est défini par

N*(@) = (d-@)=N*(a)=(a-a)

déf (<— 2

T - @) = aid = gga'd® = g*aa, (A.8.12)
=0 = gixa a” =g aar = a.

La norme du vecteur |#’ — Z|, prise en valeur absolue, est appelée distance entre
x' et I

La norme d’un vecteur, suivant la signature de la métrique, peut étre positive,
négative ou nulle. Si la signature comporte en effet p fois +1 (avec 0 < p < d) et d
fois —1, la norme du vecteur @ s’écrit, dans un référentiel pseudo-cartésien

p d
a?=) ()= > (@)?Z0 (A.8.13)
i=1 i=p+1

Pour @ # 0, il existe donc trois catégories de vecteurs : les vecteurs positifs (a2 > 0),
les vecteurs nuls (a® = 0) et les vecteurs négatifs (a*> < 0). On voit que si la métrique
est définie soit positive (alors p = d) soit négative (alors p = 0), il ne peut exister
que des vecteurs positifs respectivement négatifs.

Orthogonalité de deux vecteurs

Dans un espace métrique, nous sommes en mesure de définir la notion d’orthogo-
nalité de deuz vecteurs

-

Deux vecteurs @ et b sont dits mutuellement orthogonauz (@ L b) si leur produit
scalaire est nul, soit

—,

(@-b) = gipa'a® = 0. (A.8.14)

®n y a une seule exception : le tenseur de Kronecker d%. En effet 6% = &', c’est pourquoi nous
écrivons dy,.

) Dans un espace métrique, le produit scalaire n’est défini que pour deux vecteurs contragré-
dients.
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Angle entre deux vecteurs

Du moment que la notion de distance a un sens dans un tel espace, la notion
d’angle en prend également un. Nous nous contenterons ici de rappeler une formule
de calcul vectoriel élémentaire, valable dans I’espace euclidien.

On définit le cosinus de I'angle w entre deux vecteurs @ et b par la relation

-

(@-b) =abcosw, (A.8.15)

ou a et b sont respectivement les normes de @ et de b, soit

a=—+V|N2@)| et b=-+/|N2(b). (A.8.16)

L’espace affine & métrique constante est un espace volumétrique

En conséquence de la métrique constante, on doit avoir :
i = g AT AT, (A.8.17)
soit
det (‘g..) = det(g.)A(A)~2. (A.8.18)

Il suffit de prendre pour densité scalaire de premiere espece et de poids +1
1/2 | —1/2
gy = | det(g.)|""* = | det(g)| 7" (A.8.19)

Dans le cas d’un référentiel cartésien ou pseudo-cartésien, on a donc

(pseudo-)cartésien = g1y = 1. (A.8.20)

Réduction de la représentation symétrique

Une autre propriété du tenseur g;; est de réduire la représentation symétrique
d’un tenseur. Comme précédemment, nous nous bornerons au cas d'un tenseur
d’ordre 2 :

Qi = Q(ik) + Ak - (A.8.21)

De a1y, nous pouvons extraire un scalaire, la trace de a;;, par obtention du tenseur
mixte puis par sa contraction :

g'aq = db. (A.8.22)

Le tenseur symétrique dans lequel les termes diagonaux sont remplacés par 0 est
appelé le tenseur symétrique a trace nulle a(ik)(o). La représentation de a(y) dans un
espace métrique se décompose ainsi en trois représentations irréductibles, de rang
d(d —1)/2! pour apyy, de rang d(d+1)/2! — 1 pour agx)® et de rang 1 pour la trace
al,. Nous écrivons :

1
Qik = QJik) + ag% + Egikall. (A.8.23)

Par contraction de cette égalité, nous obtenons bien une identité.
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Opérateur différentiel contravariant — Laplacien
Le tenseur métrique g;, permet encore de définir de nouveaux opérateurs diffé-

rentiels.

a) Jusqu’alors, nous ne disposions que de la composante covariante du gradient
0; = 0/0z'. Nous passerons a la composante contravariante de cet opérateur en
posant

d' = g™y (A.8.24)
b) Nous sommes alors en mesure de définir le nouvel opérateur suivant

L’opérateur A est appelé laplacien, noté A, si la métrique est définie positive, et
dalembertien, noté OJ, si la signature est (11...1 —1). On voit que A et O sont des
opérateurs scalaires. Ils peuvent porter sur une grandeur tensorielle de tout ordre.

c) Dans l'espace a 3 dimensions (d = 3), muni d’un repére cartésien, on vérifie la
relation suivante [(ikl) — (12 3)]

G&ﬁwf:aﬁﬁwh—a@a@k
— (s:5.) (0:(9'a" — 0*a’) — By (0'a’ ~ ') )

= (s5) (= (0" + 00 + 00')a’ + &' (Bpa" + ! + Dya) ) (A.8.26)
— _Ad + 0'diva,

soit
— — 7 - =
rotrotd = —Ad -+ graddiva,

ou (s.s.) signifie « sans sommation ».

Groupe orthogonal

Enfin, I'introduction du tenseur métrique g;. permet de définir un sous-groupe
du groupe des transformations affines {A} : le groupe orthogonal {O}.

On appelle transformation orthogonale O une transformation affine A qui laisse
la métrique invariante, celle-ci étant définie (espace euclidien) :

Tt = 0%+ 0)  Z=0%, (4.8.27)
i, = O%O0" gir, (4.8.19)
signat(g;,) = +(11...1). (4.8.29)

Dans la représentation cartésienne (g% = gix = g% = 0%), ’égalité entre les com-
posantes covariantes et contravariantes entraine 1’égalité entre la matrice transposée
OT = {O%,} = {Oy} et la matrice inverse O~' = {O7;}. En effet, prenant un
vecteur @ arbitraire, nous avons, compte tenu de (8.29) :

i — O’iiai =ay = aio—li,i (A.8.30)
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ce qu’on peut écrire sous la forme
/Clli = Z O’u&z = Z aiOflm. (A831)

Le vecteur @ étant arbitraire, on obtinent
O ' = Oy = 0" (A.8.32)

11 est facile de verifier que ’ensemble des transformations orthogonales forment
un groupe, le groupe orthogonal {O}. De méme, on vérifie que les transformations or-
thogonales et homogénes (celles ou, dans (A.8.27), tous les O" sont nuls) constituent
un sous-groupe de {O}.

Ce sous-groupe, a son tour, contient le sous-groupe continu {O*} qui peut étre

engendré a partir du groupe infinitésimal :

= 0" (bw)a' = (6;z + 5wli¢):c'i. (A.8.33)
Au premier ordre, (A.8.28) donne

1 itk i % % %\ ik

g'" = <5i +(5wi)<(5 + dw k)g
I I k n.t; IRy (A'8'34)
:gzk+5w1k+5wk1 Eng.

Les parameétres dw sont donc antisymétriques ; ainsi, le groupe infinitésimal dépend
de d(d — 1)/2 paramétres 6w = fw!*,

Pour obtenir une forme matricielle de la transformation infinitésimale (A.8.33),
nous introduisons les d(d — 1)/2 matrices antisymétriques

Za = {(Za)t} = D

définies par
(Zir)'1 = 6 gr — 04 9ar- (A.8.35)

Avec leur aide, (A.8.33) prend la forme :
1 ] 1 : / 1 .
{I‘l = (5; -+ §5wlk(§]ik)ll>xl soit /.f = (I -+ ééwzk&k)f. (A836)

Nous pouvons intégrer cette relation si nous posons dw®* = limpy_,(1/N)w®;
alors

7=0(w)Z= lim (I + Q—wikEik> T =exp (—wikxik>f (A.8.37)

ol exp(z) est la série infinie >~ (1/n!)z" contenant toutes les puissances de la
matrice ;.

Le sous-groupe continu {OF(w~)} est ainsi le groupe des rotations. Nous ne vou-
lons pas entrer ici dans le détail d'une démonstration générale de cette proposition.



Notations, dimensions, espace affine et espace métrique 199

Nous allons nous contenter d’indiquer un cas de rotation, en l’explicitant pour un
espace euclidien a 4 dimensions et a référentiel cartésien. Explicitement, pour d = 4
et g = 55, et avec le choix

w2 =—w =w£0
n o (A.8.38)
w™ =0 pour toutes les autres valeurs des indices,
nous avons
0 100 -1 0 00
—-1000 0 =100 n ne
0 000 0 0 00

Alors I'exponentielle dans (A.8.37) se met sous la forme

2 4 3
exp (wEn) - (I n %232 n %z;g ¥ ) n <%212 n %2?2 . ) (A.8.40)

Etant donné la relation de récurrence en (A.8.39) on voit apparaitre les séries de
cosw et sinw. Nous obtenons donc la matrice

cosw sinw 0 0
—sinw cosw 0 0
exp (wEm) = 0 0 10 (A.8.41)
0 0 01
La transformation homogene 7 = O(w'? = w)T est une rotation d’angle w dans le

plan 1,2 (I'angle étant mesuré positivement de 1 vers 2).






ANNEXE B

Troisieme principe

en thermocinétique relativiste

Cette incursion dans la thermocinétique en relativité restreinte est faite dans
I'intention de montrer que, dans cette théorie, si le troisieme principe reste bien
un axiome, il est cependant possible de l'exprimer comme une condition supplé-
mentaire, plus forte, imposée a une inégalité déduite directement des deux autres
principes. En théorie phénoménologique, I'énergie H et ’entropie S sont fixées a
une constante arbitraire pres. Il est bien connu que la relativité restreinte permet de
déterminer la constante de 1’énergie (par I’énergie au repos). Nous pensons pouvoir
établir qu’elle permet également de déterminer la constante de ’entropie, en accord
avec la convention de Planck de fixer a S = 0 la valeur de I’entropie a température
absolue T' = +-0.

Dans lespace-temps & n = d + 1 dimensions (d dimensions d’espace, une di-
mension de temps : il faut démontrer que d = 3), nous choisissons la métrique de
signature thermodynamique

signat (¢.) = £(1, 1,...1, —1) (B.1)
et nous prenons le signe 4+ pour rendre 'espace cartésien. Nous repérons 1’espace-
temps par des indices grecs o, 3... =1,2...(n = d+ 1) et espace physique par
des indices latins i, k... =1, 2...d.

Dans ’espace temps, nous définissons une famille de lignes d’univers z® = 2%(7),
paramétrées par le temps propre, satisfaisant aux équations différentielles

=w*(2%(1)) =w*(z) Vo (B.2)

ou w® (zo‘(r)) est la vitesse d’univers (pour d = 3, c’est la quadrivitesse ; par com-
modité, précisément, nous raisonnerons désormais avec n = 4). Dans une métrique

Gii=—9u=1, gop=0sia#p, (B.3)
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les lignes d’univers temporelles satisfont a la condition

dr = +1/ gap(@)dzeda? = ++/(db7 — (dZ)? > 0, (B.4)

ol nous avons pris la vitesse de la lumiere dans le vide comme unité (¢ = 1). Ainsi
la quadrivitesse est normalisée :

wwe(z) = -1 V. (B.5)

Pour une grandeur dépendant de I'espace-temps f(z), la fluxion substantielle en
sera donnée par

. d o
fa)= ZFEm)|, = @), (B.6)
En particulier, la quadriaccélération vaut
W* = (w*0uw”) () (B.7)
et satifait a
(wp?)(x) = (waw*dw®)(z) = 0. (B.8)

Enfin, la relation entre vitesse d'univers et vitesse (d’espace) est donnée par

) . 1
w'(z) = (w')(Tt) avec w'=+—m—m—. (B.9)
1 |2@)

Dans le référentiel local instantané on a (7't) = 0 d’ou W(7) = (%) = 0, w* = 1
et dr = dt.

C’est précisément ce référentiel local instantané qui intervient dans le cas de
I’équilibre thermodynamique (principe 2b), puisqu’alors #(Z, t) = 0. Par conséquent,
tout frottement et toute conduction de chaleur s’annullent, et nous avons affaire a
un fluide parfait :

fluide parfait = @?5(:5) = m(z)(w*w?)(Z) + g*° ()p(x) (B.10)

ol @?‘Oﬁ) (x) est le tenseur symétrique de quantité de mouvement-énergie (l'indice zéro
indique le fluide parfait), et m(x) et p(z) sont deux scalaires indépendants, dont on
va montrer qu’ils sont respectivement la densité de masse inerte et la pression locale.

Nous avons a apporter deux changements au premier principe généralisé.

1. — D’abord, pour un systeme fermé 3 = ¥y, le tenseur de quantité de mouvement-
énergie doit étre symétrique et de divergence nulle :
¥ =Yg = 0%%(z) = 0@ () ; 9,0%(z) =0. (B.11)

On observe alors que, dans le fluide parfait, la masse n’est pas conservée. En
effet, en prenant la divergence de (B.10), apres avoir introduit le courant de masse

Jar () = (mw®)(x), (B12)
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on obtient
doit

0,0°%(z) = 9,53 (2)w’ (z) + §% (%) Faw® (z) + 0°p(z) = 0. (B.13)

En multipliant (B.13) par wg(x), on annulle le deuxieme terme (ce terme devient
alors (mwgw”)(x) = 0) et on obtient

Oajis(z) —p(z) = 0. (B.14)

Par conséquent, la masse M dépend de la surface temporelle 7(y) = 0 (c’est-a-
dire a normale temporelle orientée vers le futur dt > 0) sur laquelle on integre :

Mir] = /( | (doojsr)(y) dépend de la surface temporelle 7(y) =0.  (B.15)
7(y)=0

Dans le référentiel géodésique local, (B.14) se réduit a

m(Zt) = —gradp(Zt); ¥ = 2(¢), (B.16)

ce qui établit bien que m(zZ't) est la densité de masse inerte et p(Z't) la pression
(locales et instantanées). Toujours dans ce référentiel, on a

u(Zt) = @?é)(x) = (m —p)(Zt), (B.17)
soit encore
m(T't) = (u+p)(Tt) = w(Z't). (B.18)

La densité de masse est donc égale a la densité d’enthalpie!

Cette égalité nous interdit d’avoir recours a la relation entre potentiels thermo-
dynamiques
(w[spm] = T[spm] s+ p[lspm]m)(Ft), (B.19)

qui exige que la variable m soit indépendante de la fonction w.

2. — Il nous faut donc introduire une seconde modification dans le premier prin-
cipe généralisé : remplacer la masse M, qui n’est pas conservée, par la substance NV,
grandeur conservée, soit remplacer la densité de masse inerte m(z't) par la densité
de substance n(Zt) avec les propriétés

Jn(x) = (nw®)(2) ; Gajiy(z) = 0. (B.20)
Ainsi,
N = / (do,js;)(y) ne dépend pas de la surface temporelle 7(y) =0 (B.21)
7(y)=0

et
(m[s,n] = wls,n] = T[s,n] s + p[s,n]n)(L1). (B.22)
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On a donc remplacé les deux scalaires indépendants m(z) et p(x) du début par deux
autres s(z) et n(x). Par la méthode de la deuxiéme variation de la fonctionnelle,
on établit, a nouveau, que la masse inerte est toujours du signe de la température
absolue car on obtient :

3
&
N
S

=

8

n(x)>0. (B.23)

Mathématiquement, on ne peut pas tirer de cette inégalité que chacun des deux
termes de la somme la vérifie. Mais 'indépendance physique est plus forte que l'in-
dépendance mathématique. Il est des phénomeénes pour lesquels un des termes dis-
parait. Par exemple, pour un gaz de photons, le deuxiéme terme s’annulle avec
w[s(z),n(z)] = 0, ce qui nous laisse avec s(x) > 0. Par conséquent, physiquement
chacun des termes doit vérifier séparément l'inégalité, soit :

puls(z,t),n(z, t)]
T[s(z,t),n(x,t)]

s(z,t) >0 et n(z,t) #0. (B.24)

Pour I'entropie, cette exigence représente le postulat de Nernst-Planck.

Ainsi, en restituant I'indice du fluide parfait, on a les inégalités

(dVS(O))(f, t) = / (dng(g))(f, t). (B.25)

5(0)(f7t) >0; S(O)[V’t] :/
N

|4

La derniere expression introduit la densité spécifique 5¢)(,t) qui, si on choisit la
densité de substance n(Z,t) positive, ce qui exige u/T > 0, est également positive,
soit :

5(0) (Z,t) > 0. (B.26)

Ainsi, 'entropie n’est jamais négative.

Le principe de Nernst, avec la condition de Planck, se trouve donc exprimé, en
relativité restreinte, comme une condition supplémentaire, plus forte, imposée a une
inégalité, I'inégalité (B.23), déduite directement des deux autres principes.
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